A finite element based optimization algorithm to include diffusion into the analysis of DCE-MRI

被引:0
|
作者
Diego Sainz-DeMena
Wenfeng Ye
María Ángeles Pérez
José Manuel García-Aznar
机构
[1] University of Zaragoza,Department of Mechanical Engineering, Aragon Institute for Engineering Research (I3A)
[2] ANSYS France,undefined
来源
关键词
Finite element method; Inverse analysis; Pharmacokinetic modelling; Magnetic resonance imaging;
D O I
暂无
中图分类号
学科分类号
摘要
Pharmacokinetic (PK) models are used to extract physiological information from dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) sequences. Some of the most common models employed in clinical practice, such as the standard Tofts model (STM) or the extended Tofts model (ETM), do not account for passive delivery of contrast agent (CA) through diffusion. In this work, we introduce a diffusive term based on the concept of effective diffusivity into a finite element (FE) implementation of the ETM formulation, obtaining a new formulation for the diffusion-corrected ETM (D-ETM). A gradient-based optimization algorithm is developed to characterize the vascular properties of the tumour from the CA concentration curves obtained from imaging clinical data. To test the potential of our approach, several theoretical distributions of CA concentration are generated on a benchmark problem and a real tumour geometry. The vascular properties used to generate these distributions are estimated from an inverse analysis based on both the ETM and the D-ETM approaches. The outcome of these analyses shows the limitations of the ETM to retrieve accurate parameters in the presence of diffusion. The ETM returns smoothed distributions of vascular properties, reaching unphysical values in some of them, while the D-ETM accurately depicted the heterogeneity of KTrans, ve\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{e}$$\end{document} and vp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{p}$$\end{document} distributions (mean absolute relative difference (ARD) of 16%, 15% and 9%, respectively, for the real geometry case) keeping all their values within their physiological ranges, outperforming the ETM.
引用
收藏
页码:3849 / 3865
页数:16
相关论文
共 50 条
  • [1] A finite element based optimization algorithm to include diffusion into the analysis of DCE-MRI
    Sainz-DeMena, Diego
    Ye, Wenfeng
    Angeles Perez, Maria
    Manuel Garcia-Aznar, Jose
    ENGINEERING WITH COMPUTERS, 2022, 38 (05) : 3849 - 3865
  • [2] Dependence of DCE-MRI biomarker values on analysis algorithm
    Ng, Chaan S.
    Wei, Wei
    Bankson, James A.
    Ravoori, Murali K.
    Han, Lin
    Brammer, David W.
    Klumpp, Sherry
    Waterton, John C.
    Jackson, Edward F.
    PLOS ONE, 2015, 10 (07):
  • [3] Local Search Clustering Algorithm for DCE-MRI Analysis
    Hui, C.
    Narayana, P.
    MEDICAL PHYSICS, 2012, 39 (06) : 3629 - 3629
  • [4] Incorporating contrast agent diffusion into the analysis of DCE-MRI data
    Pellerin, Martin
    Yankeelov, Thomas E.
    Lepage, Martin
    MAGNETIC RESONANCE IN MEDICINE, 2007, 58 (06) : 1124 - 1134
  • [5] MRI protocol optimization for quantitative DCE-MRI of the spine
    Lavini, Cristina
    Kramer, Gem
    Pieters-den Bos, Indra
    Hoekstra, Otto
    Marcus, J. T.
    MAGNETIC RESONANCE IMAGING, 2017, 44 : 96 - 103
  • [6] Breast DCE-MRI segmentation for lesion detection using Chimp Optimization Algorithm
    Si, Tapas
    Patra, Dipak Kumar
    Mondal, Sukumar
    Mukherjee, Prakash
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 204
  • [7] Functional Kidney Analysis Based on Textured DCE-MRI Images
    Kociolek, Marcin
    Strzelecki, Michal
    Klepaczko, Artur
    INFORMATION TECHNOLOGY IN BIOMEDICINE, 2019, 1011 : 38 - 49
  • [8] A Gradient-Based Approach for Breast DCE-MRI Analysis
    Losurdo, L.
    Basile, T. M. A.
    Fanizzi, A.
    Bellotti, R.
    Bottigli, U.
    Carbonara, R.
    Dentamaro, R.
    Diacono, D.
    Didonna, V
    Lombardi, A.
    Giotta, F.
    Guaragnella, C.
    Mangia, A.
    Massafra, R.
    Tamborra, P.
    Tangaro, S.
    La Forgia, D.
    BIOMED RESEARCH INTERNATIONAL, 2018, 2018
  • [9] Software environment for fast DCE-MRI analysis
    Hoetker, A. M.
    Mildenberger, P.
    Dueber, Ch.
    Oberholzer, K.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 5, 2009, 25 : 162 - 164
  • [10] Computerized breast parenchymal analysis on DCE-MRI
    Li, Hui
    Giger, Maryellen L.
    Yuan, Yading
    Jansen, Sanaz A.
    Lan, Li
    Bhooshan, Neha
    Newstead, Gillian M.
    MEDICAL IMAGING 2009: COMPUTER-AIDED DIAGNOSIS, 2009, 7260