Improving biomedical named entity recognition with syntactic information

被引:0
作者
Yuanhe Tian
Wang Shen
Yan Song
Fei Xia
Min He
Kenli Li
机构
[1] University of Washington,
[2] Hunan University,undefined
[3] The Chinese University of Hong Kong,undefined
[4] Shenzhen Research Institute of Big Data,undefined
来源
BMC Bioinformatics | / 21卷
关键词
Named entity recognition; Text mining; Key-value memory networks; Syntactic information; Neural networks;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 105 条
[11]  
Le H-Q(2018)Drug drug interaction extraction from the literature using a recursive neural network PLoS ONE 34 1381-644
[12]  
Nguyen TM(2018)An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition Bioinformatics (Oxford, England) 34 1381-undefined
[13]  
Vu ST(2017)An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition Bioinformatics 8 65390-undefined
[14]  
Doğan RI(2013)The SPECIES and ORGANISMS resources for fast and accurate identification of taxonomic names in text PLoS ONE 9 2-undefined
[15]  
Leaman R(2008)Overview of biocreative II gene mention recognition Genome Biol 21 2794-undefined
[16]  
Lu Z(2005)POSBIOTM-NER: a trainable biomedical named-entity recognition system Bioinformatics 937 D362-undefined
[17]  
Gerner M(2016)The string database in 2017: quality-controlled protein–protein association networks, made broadly accessible Nucleic Acids Res 35 1745-undefined
[18]  
Nenadic G(2018)Cross-type biomedical named entity recognition with deep multi-task learning Bioinformatics 29 638-undefined
[19]  
Bergman C(2013)MiRCancer: a MicroRNA-cancer association database constructed by text mining on literature Bioinformatics 20 249-undefined
[20]  
Giorgi JM(2019)CollaboNet: collaboration of deep neural networks for biomedical named entity recognition BMC Bioinform 21 35-undefined