共 35 条
- [21] Monotonicity of the period map for the equation -φ′′+φ-φk=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\varphi ''+\varphi -\varphi ^{k}=0$$\end{document} [J]. Monatshefte für Mathematik, 2024, 204 (1) : 1 - 14
- [22] A Class of (ω,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\omega ,{\mathbb {T}})$$\end{document}-Periodic Solutions for Impulsive Evolution Equations of Sobolev Type [J]. Bulletin of the Iranian Mathematical Society, 2022, 48 (5) : 2743 - 2763
- [23] A New Class of (ω,c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\omega ,c)$$\end{document}-Periodic Non-instantaneous Impulsive Differential Equations [J]. Mediterranean Journal of Mathematics, 2020, 17 (5)
- [24] (High Frequency-) Uniqueness Criteria for p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p$\end{document}-Growth Functionals in in- and Compressible Elasticity [J]. Journal of Elasticity, 2023, 154 (5) : 607 - 618
- [25] Periodic Solution for ∇\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla $$\end{document}-Stochastic High-Order Hopfield Neural Networks with Time Delays on Time Scales [J]. Neural Processing Letters, 2019, 49 (3) : 1681 - 1696
- [26] Multiple periodic solutions of high order differential delay equations with 2k−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2k-1$\end{document} lags [J]. Advances in Difference Equations, 2019 (1)
- [27] Bifurcation of Multiple Periodic Solutions for a Class of Nonlinear Dynamical Systems in (m+4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m+4)$$\end{document}-Dimension [J]. Journal of Nonlinear Mathematical Physics, 31 (1)
- [28] Exploring novel solitary wave phenomena in Klein–Gordon equation using ϕ6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi ^{6}$$\end{document} model expansion method [J]. Scientific Reports, 15 (1)
- [29] Solitary Wave Solutions for (1+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+2)$$\end{document}-Dimensional Nonlinear Schrödinger Equation with Dual Power Law Nonlinearity [J]. International Journal of Applied and Computational Mathematics, 2019, 5 (5)
- [30] On the PC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{PC}$\end{document}-mild solutions of abstract fractional evolution equations with non-instantaneous impulses via the measure of noncompactness [J]. Boundary Value Problems, 2019 (1)