Local minimality properties of circular motions in 1/rα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/r^\alpha $$\end{document} potentials and of the figure-eight solution of the 3-body problem

被引:0
|
作者
M. Fenucci
机构
[1] University of Belgrade,Department of Astronomy, Faculty of Mathematics
[2] Università di Pisa,Dipartimento di Matematica
来源
Partial Differential Equations and Applications | 2022年 / 3卷 / 1期
关键词
Local minimality; Calculus of variations; Periodic solutions; Kepler problem; Figure-eight; 34B15; 49K15; 34C25; 70F10;
D O I
10.1007/s42985-022-00148-5
中图分类号
学科分类号
摘要
We first take into account variational problems with periodic boundary conditions, and briefly recall some sufficient conditions for a periodic solution of the Euler–Lagrange equation to be either a directional, a weak, or a strong local minimizer. We then apply the theory to circular orbits of the Kepler problem with potentials of type 1/rα,α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/r^\alpha , \, \alpha > 0$$\end{document}. By using numerical computations, we show that circular solutions are strong local minimizers for α>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha > 1$$\end{document}, while they are saddle points for α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document}. Moreover, we show that for α∈(1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1,2)$$\end{document} the global minimizer of the action over periodic curves with degree 2 with respect to the origin could be achieved on non-collision and non-circular solutions. After, we take into account the figure-eight solution of the 3-body problem, and we show that it is a strong local minimizer over a particular set of symmetric periodic loops.
引用
收藏
相关论文
共 35 条