Enhancing the Cognition and Efficacy of Machine Learning Through Similarity

被引:0
|
作者
Pendyala V. [1 ]
Amireddy R. [2 ]
机构
[1] Department of Applied Data Science, San Jose State University, One Washington Square, San Jose, 95192, CA
[2] Coherent Inc, 5100 Patrick Henry Dr, Santa Clara, 95054, CA
关键词
Deep learning; Machine learning; Similarity; Transcoding;
D O I
10.1007/s42979-022-01339-y
中图分类号
学科分类号
摘要
Similarity is a key element of machine learning and can make human learning much more effective as well. One of the goals of this paper is to expound on this aspect. We identify real-world concepts similar to hard-to-understand theories to enhance the learning experience and comprehension of a machine learning student. The second goal is to enhance the work in the current literature that uses similarity for transcoding. We uniquely try transcoding from Python to R and vice versa, something that was not attempted before, by identifying similarities in a latent embedding space. We list several real-world analogies to show similarities with and simplify the machine learning narrative. Next, we use Cross-Lingual Model Pretraining, Denoising Auto-encoding, and Back-translation to automatically identify similarities between the programming languages, Python and R and convert code in one to another. In the course of teaching machine learning to undergraduate, graduate, and general pool of students, the first author found that relating the concepts to real-world examples listed in this paper greatly enhanced student comprehension and made the topics much more approachable despite the math and the methods involved. When it comes to transcoding, in spite of the fact that Python and R are substantially different, we obtained reasonable success measured using various evaluation metrics and methods as described in the paper. Machines and human beings predominantly learn by way of similarity, a finding that can be explored further in both the machine and human learning domains. © 2022, The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.
引用
收藏
相关论文
共 50 条
  • [1] Enhancing Medical Diagnosis Through Deep Learning and Machine Learning Approaches in Image Analysis
    Usmani, Usman Ahmad
    Happonen, Ari
    Watada, Junzo
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 4, INTELLISYS 2023, 2024, 825 : 449 - 468
  • [2] Enhancing Sports Team Management Through Machine Learning
    Zhang, Ling
    An, Yifan
    IEEE ACCESS, 2025, 13 : 55431 - 55441
  • [3] Enhancing computer graphics through machine learning: a survey
    Jonathan Dinerstein
    Parris K. Egbert
    David Cline
    The Visual Computer, 2007, 23 : 25 - 43
  • [4] Enhancing quality control in bioprinting through machine learning
    Bonatti, Amedeo Franco
    Vozzi, Giovanni
    De Maria, Carmelo
    BIOFABRICATION, 2024, 16 (02)
  • [5] Enhancing Immunological Disorder Recognition through Machine Learning
    Basha, S. K. Akbar
    Hanirex, D. Kerana
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [6] Enhancing the stability of organic photovoltaics through machine learning
    David, Tudur Wyn
    Anizelli, Helder
    Jacobsson, T. Jesper
    Gray, Cameron
    Teahan, William
    Kettle, Jeff
    NANO ENERGY, 2020, 78
  • [7] Enhancing computer graphics through machine learning: a survey
    Dinerstein, Jonathan
    Egbert, Parris K.
    Cline, David
    VISUAL COMPUTER, 2007, 23 (01) : 25 - 43
  • [8] Enhancing Cybersecurity Through Fast Machine Learning Algorithms
    Li, Zhida
    Han, Wencheng
    Shao, Yunlong
    Makanju, Tokunbo
    2024 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CCECE 2024, 2024, : 905 - 909
  • [9] Enhancing Accessibility Through Machine Learning: A Review on Visual and Hearing Impairment Technologies
    Patel, Pal
    Pampaniya, Shreyansh
    Ghosh, Ananya
    Raj, Ritu
    Karuppaih, Deepa
    Kandasamy, Saravanakumar
    IEEE ACCESS, 2025, 13 : 33286 - 33307
  • [10] A Model Proposal of Cybersecurity for the IIoT: Enhancing IIoT Cybersecurity through Machine Learning and Deep Learning Techniques
    Buja, Atdhe
    Apostolova, Marika
    Luma, Artan
    ADVANCES IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, 2024, 4 (03): : 2408 - 2415