Approximation of signals (functions) belonging to certain Lipschitz classes by almost Riesz means of its Fourier series

被引:0
作者
Laurian-Ioan Deepmala
机构
[1] Indian Statistical Institute,SQC and OR Unit
[2] Technical University of Cluj Napoca,Department of Mathematics and Computer Science, North University Center of Baia Mare
来源
Journal of Inequalities and Applications | / 2016卷
关键词
degree of approximation; trigonometric Fourier approximation; -class of functions; almost Riesz means;
D O I
暂无
中图分类号
学科分类号
摘要
To start with, signals are dealt with as functions of one variable and images are shown by elements of two variables. The investigation of these ideas is directly related to the transpiring area of information technology. The approximation properties of the periodic signals in Lr(r≥1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{r}\ (r \geq1)$\end{document}-spaces, Lipschitz classes Lipα, Lip(α,r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{Lip}(\alpha, r)$\end{document}, Lip(ξ(t),r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{Lip}(\xi(t), r)$\end{document}, and a weighted Lipschitz class W(Lr,ξ(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W(L^{r}, \xi( t))$\end{document} through a Fourier series, known as the Fourier approximation in the approximation theory, have wide applications in digital filters and signal analysis. The goal of our paper is to concentrate on the approximation properties of the periodic signals (functions) in the Lipschitz classes by almost Riesz means of the Fourier series associated with the function f. We additionally take note of the fact that our outcomes give sharper estimates than the estimates in some of the known results.
引用
收藏
相关论文
共 55 条
  • [11] Noman AK(1978)Some sequence spaces and absolute almost convergence Math. Proc. Camb. Philos. Soc. 83 51-54
  • [12] Mohiuddine SA(1969)A new type of convergence Proc. Am. Math. Soc. 20 1473-1478
  • [13] Alotaibi A(1975)Almost convergent and almost summable sequences Indian J. Pure Appl. Math. 6 909-918
  • [14] Das G(2012)On the degree of approximation to a function by triangular matrix of its conjugate Fourier series II Int. J. Contemp. Math. Sci. 7 91-105
  • [15] Kuttner B(2014)Trigonometric approximation of signals (functions) in J. Class. Anal. 5 252-263
  • [16] Nanda S(2014)-norm Appl. Math. Comput. 237 40-53
  • [17] Maddox IJ(2013)Trigonometric approximation of periodic signals belonging to generalized weighted Lipschitz Bull. Math. Anal. Appl. 5 1703-1715
  • [18] Schaefer P(2012)-class by Nörlund-Euler Int. J. Math. Anal. 6 155-164
  • [19] Khan HH(2014) operator of conjugate series of its Fourier series Mat. Vesn. 66 61-69
  • [20] Mishra VN(2014)On the trigonometric approximation of signals belonging to generalized weighted Lipschitz Glob. J. Math. Sci. 2 168-207