Approximation of signals (functions) belonging to certain Lipschitz classes by almost Riesz means of its Fourier series

被引:0
作者
Laurian-Ioan Deepmala
机构
[1] Indian Statistical Institute,SQC and OR Unit
[2] Technical University of Cluj Napoca,Department of Mathematics and Computer Science, North University Center of Baia Mare
来源
Journal of Inequalities and Applications | / 2016卷
关键词
degree of approximation; trigonometric Fourier approximation; -class of functions; almost Riesz means;
D O I
暂无
中图分类号
学科分类号
摘要
To start with, signals are dealt with as functions of one variable and images are shown by elements of two variables. The investigation of these ideas is directly related to the transpiring area of information technology. The approximation properties of the periodic signals in Lr(r≥1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{r}\ (r \geq1)$\end{document}-spaces, Lipschitz classes Lipα, Lip(α,r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{Lip}(\alpha, r)$\end{document}, Lip(ξ(t),r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{Lip}(\xi(t), r)$\end{document}, and a weighted Lipschitz class W(Lr,ξ(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W(L^{r}, \xi( t))$\end{document} through a Fourier series, known as the Fourier approximation in the approximation theory, have wide applications in digital filters and signal analysis. The goal of our paper is to concentrate on the approximation properties of the periodic signals (functions) in the Lipschitz classes by almost Riesz means of the Fourier series associated with the function f. We additionally take note of the fact that our outcomes give sharper estimates than the estimates in some of the known results.
引用
收藏
相关论文
共 55 条
  • [1] Lorentz GG(1948)A contribution to the theory of divergent series Acta Math. 80 167-190
  • [2] Ahmad ZU(1988)An application of Banach limits Proc. Am. Math. Soc. 103 244-246
  • [3] Mursaleen M(1966)Almost summable sequences Proc. Am. Math. Soc. 17 1219-1225
  • [4] King JP(1977)Quantitative results on almost convergence of a sequence of positive linear operators J. Approx. Theory 20 239-250
  • [5] Mohapatra RN(1985)Functions of class J. Approx. Theory 45 363-374
  • [6] Mohapatra RN(1976) and their Taylor mean J. Aust. Math. Soc. A 22 446-455
  • [7] Nanda S(2011)Some sequence spaces and almost convergence Appl. Math. Lett. 24 1856-1860
  • [8] Mohiuddine SA(2010)An application of almost convergence in approximation theorems Appl. Math. Lett. 23 1382-1387
  • [9] Edely OHH(2013)Korovkin type approximation theorems obtained through generalized statistical convergence J. Inequal. Appl. 2013 729-739
  • [10] Mohiuddine SA(1984)Korovkin second theorem via statistical summability Trans. Am. Math. Soc. 283 61-64