C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras, H∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^*$$\end{document}-algebras and trace ideals of pseudo-differential operators on locally compact, Hausdorff and abelian groups

被引:0
|
作者
Vishvesh Kumar
M. W. Wong
机构
[1] Indian Institute of Technology Delhi,Department of Mathematics
[2] York University,Department of Mathematics and Statistics
关键词
Locally compact; Hausdorff and abelian group; Haar measure; Fourier transform; Plancherel formula; Fourier inversion formula; Pseudo-differential operator; Symbol; Hilbert–Schmidt operator; Trace class operator; Trace; Product; Adjoint; -algebra; -algebra; Primary 47G30; Secondary 43A32;
D O I
10.1007/s11868-019-00280-8
中图分类号
学科分类号
摘要
We define pseudo-differential operators on a locally compact, Hausdorff and abelian group G as natural extensions of pseudo-differential operators on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}. In particular, for pseudo-differential operators with symbols in L2(G×G^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(G\times \widehat{G})$$\end{document}, where G^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{G}$$\end{document} is the dual group of G, we give explicit formulas for the products and adjoints, characterize them as Hilbert–Schmidt operators on L2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(G)$$\end{document} and prove that they form a C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra, which is also a H∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^*$$\end{document}-algebra. We give a characterization of trace class pseudo-differential operators in terms of symbols lying in a subspace of L1(G×G^)∩L2(G×G^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1(G\times \widehat{G})\cap L^2(G\times \widehat{G})$$\end{document}.
引用
收藏
页码:269 / 283
页数:14
相关论文
共 50 条