A mechanical model for creep, recovery and stress relaxation in polymeric materials

被引:0
作者
Kevin S. Fancey
机构
[1] University of Hull,Department of Engineering
来源
Journal of Materials Science | 2005年 / 40卷
关键词
Polymer; Potential Energy; Energy Barrier; Polymeric Material; Exponential Function;
D O I
暂无
中图分类号
学科分类号
摘要
A mechanical model is presented, in which viscoelastic response is described by the action of time-dependent latch elements. The model represents viscoelastic changes occurring through incremental jumps as opposed to continuous motion. This is supported by the observation that polymeric creep, recovery and stress relaxation can be correlated with stretched exponential functions, i.e. Weibull and Kohlrausch-Williams-Watts, since (i) the former is also used in reliability engineering to represent the failure of discrete elements and (ii) there is evidence of the latter being an approximation to the Eyring potential energy barrier relationship, which describes motion in terms of molecular jumps.
引用
收藏
页码:4827 / 4831
页数:4
相关论文
共 24 条
  • [1] K. S FANCEY(2001)undefined J. Polymer Eng. 21 489-undefined
  • [2] R. G PALMER(1984)undefined Phys. Rev. Lett. 53 958-undefined
  • [3] D. L STEIN(1970)undefined Trans. Faraday Soc. 66 80-undefined
  • [4] E ABRAHAMS(1951)undefined J. App. Mech. 18 293-undefined
  • [5] P. W ANDERSON(1991)undefined Rheol. Acta. 30 419-undefined
  • [6] G WILLIAMS(1997)undefined Polymer Eng. Sci. 37 1664-undefined
  • [7] D. C WATTS(1998)undefined J. Appl. Polymer Sci. 69 1983-undefined
  • [8] W WEIBULL(1997)undefined J. Non-Cryst. Solids 209 257-undefined
  • [9] WIMBERGER-FRIEDL R(1967)undefined J. Macromol. Sci. (Phys.) B1 1-undefined
  • [10] DE BRUIN J. G.(1984)undefined J. Mater. Sci. 19 629-undefined