Torsion elements in effect algebras

被引:0
|
作者
Wei Ji
Xiao Long Xin
机构
[1] Northwest University,Department of Mathematics
来源
Soft Computing | 2011年 / 15卷
关键词
Effect algebra; Riesz decomposition property; Basic decomposition of an element; Sharp element; Orthocomplete;
D O I
暂无
中图分类号
学科分类号
摘要
We define the torsion element in effect algebras and use it to characterize MV-effect algebra and 0-homogeneous effect algebras in chain-complete effect algebras. As an application, we prove that every element of an orthocomplete homogeneous atomic effect algebra has a unique basic decomposition into a sum of a sharp element and unsharp multiples of atoms. Further, we characterize homogeneity by the set of all sharp elements in orthocomplete atomic effect algebras.
引用
收藏
页码:2501 / 2505
页数:4
相关论文
共 50 条
  • [41] Perfect Effect Algebras and Spectral Resolutions of Observables
    Anatolij Dvurečenskij
    Foundations of Physics, 2019, 49 : 607 - 628
  • [42] Perfect Effect Algebras and Spectral Resolutions of Observables
    Dvurecenskij, Anatolij
    FOUNDATIONS OF PHYSICS, 2019, 49 (06) : 607 - 628
  • [43] Generalized pseudo-EMV-effect algebras
    Dvurecenskij, Anatolij
    Zahiri, Omid
    SOFT COMPUTING, 2019, 23 (20) : 9807 - 9819
  • [44] Atomic Effect Algebras with the Riesz Decomposition Property
    Dvurecenskij, Anatolij
    Xie, Yongjian
    FOUNDATIONS OF PHYSICS, 2012, 42 (08) : 1078 - 1093
  • [45] Effect Algebras as Presheaves on Finite Boolean Algebras
    Jenca, Gejza
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2018, 35 (03): : 525 - 540
  • [46] Effect Algebras as Presheaves on Finite Boolean Algebras
    Gejza Jenča
    Order, 2018, 35 : 525 - 540
  • [47] INTERVALS IN GENERALIZED EFFECT ALGEBRAS AND THEIR SUB-GENERALIZED EFFECT ALGEBRAS
    Riecanova, Zdenka
    Zajac, Michal
    ACTA POLYTECHNICA, 2013, 53 (03) : 314 - 316
  • [48] Product Effect Algebras
    Anatolij Dvurečenskij
    International Journal of Theoretical Physics, 2002, 41 : 1827 - 1839
  • [49] Orthocomplete effect algebras
    Jenca, G
    Pulmannová, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (09) : 2663 - 2671
  • [50] MEASURES ON EFFECT ALGEBRAS
    Barbieri, Giuseppina
    Garcia-Pacheco, Francisco J.
    Moreno-Pulido, Soledad
    MATHEMATICA SLOVACA, 2019, 69 (01) : 159 - 170