Analyticity of Gaussian Free Field Percolation Observables

被引:0
作者
Christoforos Panagiotis
Franco Severo
机构
[1] Université de Genève,
[2] ETH Zürich,undefined
来源
Communications in Mathematical Physics | 2022年 / 396卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove that cluster observables of level-sets of the Gaussian free field on the hypercubic lattice Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}}^d$$\end{document}, d≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, are analytic on the whole off-critical regime R\{h∗}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}\setminus \{h_*\}$$\end{document}. This result concerns in particular the percolation density function θ(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta (h)$$\end{document} and the (truncated) susceptibility χ(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (h)$$\end{document}. As an important step towards the proof, we show the exponential decay in probability for the capacity of a finite cluster for all h≠h∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\ne h_*$$\end{document}, which we believe to be a result of independent interest. We also discuss the case of general transient graphs.
引用
收藏
页码:187 / 223
页数:36
相关论文
共 50 条
[41]   Loop Measures and the Gaussian Free Field [J].
Lawler, Gregory F. ;
Perlman, Jacob .
RANDOM WALKS, RANDOM FIELDS, AND DISORDERED SYSTEMS, 2015, 2144 :211-235
[42]   INTERNAL DLA AND THE GAUSSIAN FREE FIELD [J].
Jerison, David ;
Levine, Lionel ;
Sheffield, Scott .
DUKE MATHEMATICAL JOURNAL, 2014, 163 (02) :267-308
[43]   LOCAL METRICS OF THE GAUSSIAN FREE FIELD [J].
Gwynne, Ewain ;
Miller, Jason .
ANNALES DE L INSTITUT FOURIER, 2020, 70 (05) :2049-2075
[44]   Extremes of the supercritical Gaussian Free Field [J].
Chiarini, Alberto ;
Cipriani, Alessandra ;
Hazra, Rajat Subhra .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2016, 13 (02) :711-724
[45]   RANDOM INTERLACEMENTS AND THE GAUSSIAN FREE FIELD [J].
Sznitman, Alain-Sol .
ANNALS OF PROBABILITY, 2012, 40 (06) :2400-2438
[46]   THICK POINTS OF THE GAUSSIAN FREE FIELD [J].
Hu, Xiaoyu ;
Miller, Jason ;
Peres, Yuval .
ANNALS OF PROBABILITY, 2010, 38 (02) :896-926
[47]   Relating Nets and Factorization Algebras of Observables: Free Field Theories [J].
Owen Gwilliam ;
Kasia Rejzner .
Communications in Mathematical Physics, 2020, 373 :107-174
[48]   Relating Nets and Factorization Algebras of Observables: Free Field Theories [J].
Gwilliam, Owen ;
Rejzner, Kasia .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 373 (01) :107-174
[49]   LOCAL NETS OF ALGEBRAS OF OBSERVABLES FOR FREE SCALAR CHARGED FIELD [J].
ILYIN, VA .
VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 3 FIZIKA ASTRONOMIYA, 1979, 20 (02) :16-25
[50]   ANALYTICITY OF FIELD THEORY [J].
TAYLOR, JG .
PHYSICAL REVIEW, 1964, 136 (4B) :1134-+