Analyticity of Gaussian Free Field Percolation Observables

被引:0
作者
Christoforos Panagiotis
Franco Severo
机构
[1] Université de Genève,
[2] ETH Zürich,undefined
来源
Communications in Mathematical Physics | 2022年 / 396卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove that cluster observables of level-sets of the Gaussian free field on the hypercubic lattice Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}}^d$$\end{document}, d≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, are analytic on the whole off-critical regime R\{h∗}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}\setminus \{h_*\}$$\end{document}. This result concerns in particular the percolation density function θ(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta (h)$$\end{document} and the (truncated) susceptibility χ(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (h)$$\end{document}. As an important step towards the proof, we show the exponential decay in probability for the capacity of a finite cluster for all h≠h∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\ne h_*$$\end{document}, which we believe to be a result of independent interest. We also discuss the case of general transient graphs.
引用
收藏
页码:187 / 223
页数:36
相关论文
共 50 条
[31]   A characterisation of the Gaussian free field [J].
Berestycki, Nathanael ;
Powell, Ellen ;
Ray, Gourab .
PROBABILITY THEORY AND RELATED FIELDS, 2020, 176 (3-4) :1259-1301
[32]   Dominos and the Gaussian free field [J].
Kenyon, R .
ANNALS OF PROBABILITY, 2001, 29 (03) :1128-1137
[33]   Free field theory and observables of periodic Macdonald processes [J].
Koshida, Shinji .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 182
[34]   VONNEUMANN ALGEBRAS OF LOCAL OBSERVABLES FOR FREE SCALAR FIELD [J].
ARAKI, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (01) :1-&
[35]   GAUSSIAN FREE FIELD AND CONFORMAL FIELD THEORY [J].
Kang, Nam-Gyu ;
Makarov, Nikolai G. .
ASTERISQUE, 2013, (353) :1-+
[36]   Gaussian Maximizers for Quantum Gaussian Observables and Ensembles [J].
Holevo, Alexander S. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (09) :5634-5641
[37]   PERCOLATION FOR LEVEL-SETS OF GAUSSIAN FREE FIELDS ON METRIC GRAPHS [J].
Ding, Jian ;
Wirth, Mateo .
ANNALS OF PROBABILITY, 2020, 48 (03) :1411-1435
[38]   Impact of a non-Gaussian density field on Sunyaev-Zeldovich observables [J].
Sadeh, Sharon ;
Rephaeli, Yoel ;
Silk, Joseph .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 368 (04) :1583-1598
[39]   Short-time dynamics of percolation observables [J].
Wanzeller, Wanderson G. ;
Mendes, Tereza ;
Krein, Gastao .
PHYSICAL REVIEW E, 2006, 74 (05)
[40]   Gaussian Free Field on Hyperbolic Lattices [J].
Benjamini, Itai .
GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR (GAFA) 2011-2013, 2014, 2116 :39-45