Analyticity of Gaussian Free Field Percolation Observables

被引:0
|
作者
Christoforos Panagiotis
Franco Severo
机构
[1] Université de Genève,
[2] ETH Zürich,undefined
来源
Communications in Mathematical Physics | 2022年 / 396卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove that cluster observables of level-sets of the Gaussian free field on the hypercubic lattice Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}}^d$$\end{document}, d≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, are analytic on the whole off-critical regime R\{h∗}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}\setminus \{h_*\}$$\end{document}. This result concerns in particular the percolation density function θ(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta (h)$$\end{document} and the (truncated) susceptibility χ(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (h)$$\end{document}. As an important step towards the proof, we show the exponential decay in probability for the capacity of a finite cluster for all h≠h∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\ne h_*$$\end{document}, which we believe to be a result of independent interest. We also discuss the case of general transient graphs.
引用
收藏
页码:187 / 223
页数:36
相关论文
共 50 条
  • [1] Analyticity of Gaussian Free Field Percolation Observables
    Panagiotis, Christoforos
    Severo, Franco
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 396 (01) : 187 - 223
  • [2] Percolation for the Gaussian free field on the cable system: counterexamples
    Prevost, Alexis
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [3] EQUALITY OF CRITICAL PARAMETERS FOR PERCOLATION OF GAUSSIAN FREE FIELD LEVEL
    Duminil-Copin, Hugo
    Goswami, Subhajit
    Rodriguez, Pierre-Francois
    Severo, Franco
    DUKE MATHEMATICAL JOURNAL, 2023, 172 (05) : 839 - 913
  • [4] On Decoupling Inequalities and Percolation of Excursion Sets of the Gaussian Free Field
    Serguei Popov
    Balázs Ráth
    Journal of Statistical Physics, 2015, 159 : 312 - 320
  • [5] EXISTENCE OF PHASE TRANSITION FOR PERCOLATION USING THE GAUSSIAN FREE FIELD
    Duminil-Copin, Hugo
    Goswami, Subhajit
    Raoufi, Aran
    Severo, Franco
    Yadin, Ariel
    DUKE MATHEMATICAL JOURNAL, 2020, 169 (18) : 3539 - 3563
  • [6] Disconnection and level-set percolation for the Gaussian free field
    Sznitman, Alain-Sol
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (04) : 1801 - 1843
  • [7] On Decoupling Inequalities and Percolation of Excursion Sets of the Gaussian Free Field
    Popov, Serguei
    Rath, Balazs
    JOURNAL OF STATISTICAL PHYSICS, 2015, 159 (02) : 312 - 320
  • [8] Level set percolation for random interlacements and the Gaussian free field
    Rodriguez, Pierre-Francois
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (04) : 1469 - 1502
  • [9] Level-set percolation for the Gaussian free field on a transient tree
    Abacherli, Angelo
    Sznitman, Alain-Sol
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (01): : 173 - 201
  • [10] Phase Transition and Level-Set Percolation for the Gaussian Free Field
    Pierre-François Rodriguez
    Alain-Sol Sznitman
    Communications in Mathematical Physics, 2013, 320 : 571 - 601