Perfectly Matched Layers Methods for Mixed Hyperbolic–Dispersive Equations

被引:0
|
作者
Christophe Besse
Sergey Gavrilyuk
Maria Kazakova
Pascal Noble
机构
[1] Université Paul Sabatier,Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS
[2] Aix Marseille Université,IUSTI, UMR7343
[3] CNRS,LAMA, CNRS
[4] Univ. Grenoble Alpes,Institut de Mathématiques de Toulouse, UMR5219
[5] Univ. Savoie Mont Blanc,undefined
[6] Université de Toulouse,undefined
[7] CNRS,undefined
[8] INSA,undefined
[9] Toulouse,undefined
来源
Water Waves | 2022年 / 4卷
关键词
Perfectly matched layers; Water waves hyperbolic–dispersive equations; Korteweg-de Vries equation; Boussinesq-like approximation;
D O I
暂无
中图分类号
学科分类号
摘要
Absorbing boundary conditions are important when one simulates the propagation of waves on a bounded numerical domain without creating artificial reflections. In this paper, we consider various hyperbolic–dispersive equations modeling water wave propagation. A typical example is the Korteweg–de Vries equation 1ut+uux+εuxxx=0,∀x∈R,∀t>0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \displaystyle u_t+u\,u_x+\varepsilon u_{xxx}=0,\quad \forall x\in {\mathbb {R}}, \quad \forall t>0. \end{aligned}$$\end{document}In the case of linearized equations, some progress was recently done for one dimensional scalar dispersive equations using discrete transparent boundary conditions. However, a generalization of this approach to multi-dimensional setting is not obvious. In this paper, we consider the alternative perfectly matched layer (PML) approach for the linearized Korteweg–de Vries equation: 2ut+Uux+εuxxx=0∀x∈R,∀t>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \displaystyle u_t+U\,u_x+\varepsilon u_{xxx}=0\quad \forall x\in {\mathbb {R}}, \quad \forall t>0, \end{aligned}$$\end{document}where U∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U\in {\mathbb {R}}$$\end{document} denotes a reference speed. We first propose a direct perfectly matched layer approach and study the stability of the modified system. These equations are not always stable, the main obstruction being the classical condition vg(k)vϕ(k)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_g(k)v_\phi (k)\ge 0$$\end{document} found in the literature on PML (Bécache et al in J Comput Phys 188(2):399–433, 2003) that we recover in our analysis. Then, we introduce a hyperbolic system with a source term that is an approximation of the Korteweg–de Vries equations. In this case, the complete PML equations are not, again, completely stable. However, a version of the PML equations for this system derived without the source term is found to be stable and can absorb outgoing waves although it may create reflections as it is not perfectly matched. Finally, we consider the BBM–Boussinesq system that models bi-directional waves at the surface of an inviscid fluid layer. The dispersive properties for a subclass of physically relevant models are better suited for PML techniques since the condition vg(k)vϕ(k)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_g(k)v_\phi (k)\ge 0$$\end{document} is always satisfied. We show that the PML equations are always stable in this case. We illustrate numerically the absorbing and stability properties of these PML models and provide also KdV type simulation by choosing properly initial data.
引用
收藏
页码:313 / 343
页数:30
相关论文
共 50 条
  • [41] Efficiency of perfectly matched layers for seismic wave modeling in second-order viscoelastic equations
    Ping, Ping
    Zhang, Yu
    Xu, Yixian
    Chu, Risheng
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 207 (03) : 1367 - 1386
  • [42] Perfectly matched layers for Schrodinger-type equations with nontrivial energy-momentum dispersion
    Poetz, Walter
    COMPUTER PHYSICS COMMUNICATIONS, 2020, 257 (257)
  • [43] Perfectly matched layer absorbing boundary condition for dispersive medium
    Uno, T
    He, YW
    Adachi, S
    IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1997, 7 (09): : 264 - 266
  • [44] Comparison of finite difference and mixed finite element methods for perfectly matched layer models
    Bokil, V. A.
    Buksas, M. W.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2007, 2 (04) : 806 - 826
  • [45] The superconvergence of mixed finite element methods for nonlinear hyperbolic equations
    Chen, Yanping
    Huang, Yunqing
    Communications in Nonlinear Science and Numerical Simulation, 1998, 3 (03): : 155 - 158
  • [46] Discretization of continuous spectra based on perfectly matched layers
    Olyslager, F
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 64 (04) : 1408 - 1433
  • [47] Stability considerations for perfectly matched layers in piezoelectric crystals
    Chagla, F
    Smith, PM
    2005 IEEE ULTRASONICS SYMPOSIUM, VOLS 1-4, 2005, : 438 - 441
  • [48] Optimal configurations for perfectly matched layers in FDTD simulations
    Travassos, XL
    Avila, SL
    Prescott, D
    Nicolas, A
    Krähenbühl, L
    IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (04) : 563 - 566
  • [49] Minimizing the discrete reflectivity of perfectly matched layers.
    Lu, YY
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18 (1-4) : 487 - 489
  • [50] An FDTD algorithm with perfectly matched layers for conductive media
    Liu, QH
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1997, 14 (02) : 134 - 137