Some Approximation Results on Two Parametric q-Stancu–Beta Operators

被引:0
作者
M. Mursaleen
Khursheed J. Ansari
机构
[1] Aligarh Muslim University,Department of Mathematics
[2] King Khalid University,Department of Mathematics, College of Science
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2019年 / 42卷
关键词
-analogue of Stancu–Beta operators; Modulus of continuity; Voronovskaja-type theorem; -functional; Weighted approximation; Rate of approximation; -Beta integral; 41A10; 41A25; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we introduce a two parametric q-analogue of Stancu-Beta operators and establish some direct results in the polynomial weighted space of continuous functions defined on the interval [0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\infty )$$\end{document}. We use Lipschitz-type maximal function to find pointwise estimate. Furthermore, we obtain a Voronovskaja-type theorem for these operators.
引用
收藏
页码:585 / 601
页数:16
相关论文
共 16 条
[1]  
Aral A(2012)On Appl. Math. Lett. 25 67-71
[2]  
Gupta V(2003)-analogue of Stancu–Beta operators Czechoslov. Math. J. 53 45-53
[3]  
Gadjiev AD(2011)On Korovkin type theorem in the space of locally integrable functions Acta Math. Appl. Sin. English Ser. 27 569-580
[4]  
Efendiyev RO(1988)Approximation by Proc. Netherland Acad. Sci. A 91 53-63
[5]  
Ibikli E(1987)-Baskakov beta operators Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca, Cluj-Napoca 9 85-92
[6]  
Gupta V(2015)On Lipschitz-type maximal functions and their smoothness spaces Numer. Funct. Anal. Optim. 36 1178-1197
[7]  
Aral A(2015)A Math. Meth. Appl. Sci. 38 5242-5252
[8]  
Lenze B(1995)-analogue of the Bernstein operator Rev. Anal. Numér. Théor. Approx. 24 231-239
[9]  
Lupaş A(undefined)Approximation properties for modified undefined undefined undefined-undefined
[10]  
Mursaleen M(undefined)-Bernstein–Kantorovich operators undefined undefined undefined-undefined