PRF-RW: a progressive random forest-based random walk approach for interactive semi-automated pulmonary lobes segmentation

被引:0
作者
Qiang Li
Lei Chen
Xiangju Li
Xiaofeng Lv
Shuyue Xia
Yan Kang
机构
[1] Northeastern University,
[2] Neusoft Medical Systems Ltd.,undefined
[3] Neusoft Corporation,undefined
[4] The Central Hospital Affiliated to Shenyang Medical College,undefined
[5] Shenzhen Technology University,undefined
来源
International Journal of Machine Learning and Cybernetics | 2020年 / 11卷
关键词
Random forest; Lobes segmentation; Random walk; Semi-automated segmentation; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
The computational detection of lung lobes from computed tomography images is a challenging segmentation problem with important respiratory healthcare applications, including emphysema, chronic bronchitis, and asthma. This paper proposes a progressive random forest-based random walk approach for interactive semi-automated pulmonary lobes segmentation. First, our model performs automated segmentation of the lung lobes in a progressive random forest network, eliminating the need for prior segmentation of lungs, vessels, or airways. Then, an interactive lobes segmentation approach based on random walk mechanism is designed for improving auto-segmentation accuracy. Furthermore, we annotate a new dataset which contains 93 scans (57 men, 36 women; age range: 40–90 years) from the Central Hospital Affiliated with Shenyang Medical College (CHASMC). We evaluate the model on our annotated dataset, LIDC (https://wiki.cancerimagingarchive.net) and LOLA11 (http://lolall.com/) datasets. The proposed model achieved a Dice score of 0.906±0.106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.906 \pm 0.106$$\end{document} for LIDC, 0.898±0.113\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.898 \pm 0.113$$\end{document} for LOLA11, and 0.921±0.101\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.921 \pm 0.101$$\end{document} for our dataset. Experimental results show the accuracy of the proposed approach, which consistently improves performance across different datasets by a maximum of 8.2% as compared to baselines model.
引用
收藏
页码:2221 / 2235
页数:14
相关论文
共 243 条
[1]  
Stamatis G(2015)Staging of lung cancer: the role of noninvasive, minimally invasive and invasive techniques Eur Respir J 46 521-531
[2]  
Santosh K(2016)Edge map analysis in chest X-rays for automatic pulmonary abnormality screening Int J Comput Assist Radiol Surg 11 1637-1646
[3]  
Vajda S(2016)Combination of texture and shape features to detect pulmonary abnormalities in digital chest X-rays Int J Comput Assist Radiol Surg 11 99-106
[4]  
Antani S(2017)Automated chest X-ray screening: can lung region symmetry help detect pulmonary abnormalities? IEEE Trans Med Imaging 37 1168-1177
[5]  
Thoma GR(2018)Feature selection for automatic tuberculosis screening in frontal chest radiographs J Med Syst 42 146-1458
[6]  
Karargyris A(2018)Angular relational signature-based chest radiograph image view classification Med Biol Eng Comput 56 1447-1083
[7]  
Siegelman J(2019)An improved random forests approach for interactive lobar segmentation on emphysema detection Granul Comput 345 1075-222
[8]  
Tzortzis D(2001)Patients at high risk of death after lung-volume-reduction surgery N Engl J Med 32 210-1393
[9]  
Jaeger S(2013)Automatic segmentation of the pulmonary lobes from chest ct scans based on fissures, vessels, and bronchi IEEE Trans Med Imaging 56 1383-166
[10]  
Candemir S(2009)Segmentation of lung lobes in high-resolution isotropic CT images IEEE Trans Biomed Eng 38 156-35