On meromorphic solutions of some linear differential equations with entire coefficients being Fabry gap series

被引:0
作者
Shun-Zhou Wu
Xiu-Min Zheng
机构
[1] Jiangxi Normal University,Institute of Mathematics and Information Science
来源
Advances in Difference Equations | / 2015卷
关键词
linear differential equation; meromorphic solution; growth; exponent of convergence; Fabry gap series; 30D35; 34M10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the growth and the exponent of convergence of the sequence of φ-points of meromorphic solutions of the linear differential equations Ak(z)f(k)+Ak−1(z)f(k−1)+⋯+A1(z)f′+A0(z)f=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{k}(z)f^{(k)}+A_{k-1}(z)f^{(k-1)}+ \cdots+A_{1}(z)f'+A_{0}(z)f=0 $$\end{document} and Ak(z)f(k)+Ak−1(z)f(k−1)+⋯+A1(z)f′+A0(z)f=F(z),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{k}(z)f^{(k)}+A_{k-1}(z)f^{(k-1)}+ \cdots+A_{1}(z)f'+A_{0}(z)f=F(z), $$\end{document} with entire coefficients Aj(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{j}(z)$\end{document}, j=0,1,…,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$j=0,1,\ldots,k$\end{document} and F(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F(z)$\end{document}, where k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k\geq2$\end{document}, A0(z)Ak(z)≢0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{0}(z)A_{k}(z)\not\equiv0$\end{document}, φ(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varphi(z)$\end{document} is a meromorphic function of finite order, and there is only one dominant coefficient Ak(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{k}(z)$\end{document} of the maximal order, which is also a Fabry gap series.
引用
收藏
相关论文
共 30 条
[1]  
Cao TB(2010)On the meromorphic solutions of linear differential equations on the complex plane J. Math. Anal. Appl. 364 130-142
[2]  
Xu JF(1998)Linear differential equations with solutions of finite iterated order Southeast Asian Bull. Math. 22 385-405
[3]  
Chen ZX(2009)Growth of solutions of complex differential equations with meromorphic coefficients of finite iterated order Southeast Asian Bull. Math. 33 153-164
[4]  
Kinnunen L(2002)Growth of solutions of an Kodai Math. J. 25 240-245
[5]  
Tu J(2003)-th order linear differential equation with entire coefficients Electron. J. Differ. Equ. 2003 403-416
[6]  
Chen ZX(1993)Order and hyper-order of entire solutions of linear differential equations with entire coefficients J. Math. Anal. Appl. 179 453-464
[7]  
Belaïdi B(1997)The complex oscillation theory of certain non-homogeneous linear differential equations with transcendental entire coefficients Acta Math. Sin. 13 7-14
[8]  
Hamouda S(1999)Entire solutions of differential equations with finite order transcendental entire coefficients Chin. Ann. Math., Ser. A 20 851-861
[9]  
Belaïdi B(2009)The growth of solutions of a type of second order differential equations with entire coefficients Electron. J. Qual. Theory Differ. Equ. 2009 203-216
[10]  
Hamani K(2013)Growth of meromorphic solutions of higher-order linear differential equations Acta Math. Appl. Sin. 36 145-157