Higher-Order Averaging, Formal Series and Numerical Integration I: B-series

被引:0
作者
P. Chartier
A. Murua
J. M. Sanz-Serna
机构
[1] ENS Cachan Bretagne,INRIA Rennes
[2] UPV/EHU,Konputazio Zientziak eta A.A. Saila, Informatika Fakultatea
[3] Universidad de Valladolid,Departamento de Matemática Aplicada, Facultad de Ciencias
来源
Foundations of Computational Mathematics | 2010年 / 10卷
关键词
Averaging; High-order stroboscopic averaging; Highly oscillatory problems; Hamiltonian problems; Multiscale numerical methods; Numerical integrators; Formal series; B-series; Trees; Fermi–Pasta–Ulam problem; Adiabatic invariants; Inverted Kapitsa’s pendulum; 34C29; 65L06; 34D20; 70H05; 79K65;
D O I
暂无
中图分类号
学科分类号
摘要
We show how B-series may be used to derive in a systematic way the analytical expressions of the high-order stroboscopic averaged equations that approximate the slow dynamics of highly oscillatory systems. For first-order systems we give explicitly the form of the averaged systems with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(\epsilon^{j})$\end{document} errors, j=1,2,3 (2πε denotes the period of the fast oscillations). For second-order systems with large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(\epsilon^{-1})$\end{document} forces, we give the explicit form of the averaged systems with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{O}(\epsilon^{j})$\end{document} errors, j=1,2. A variant of the Fermi–Pasta–Ulam model and the inverted Kapitsa pendulum are used as illustrations. For the former it is shown that our approach establishes the adiabatic invariance of the oscillatory energy. Finally we use B-series to analyze multiscale numerical integrators that implement the method of averaging. We construct integrators that are able to approximate not only the simplest, lowest-order averaged equation but also its high-order counterparts.
引用
收藏
页码:695 / 727
页数:32
相关论文
共 35 条
[1]  
Ariel G.(2009)A multiscale method for highly oscillatory ordinary differential equations with resonance Math. Comput. 78 929-956
[2]  
Engquist B.(1994)Canonical B-series Numer. Math. 67 161-175
[3]  
Tsai R.(2009)Instabilities and inaccuracies in the integration of highly oscillatory problems SIAM J. Sci. Comput. 31 1653-1677
[4]  
Calvo M.P.(2003)Analysis of the heterogeneous multiscale method for ordinary differential equations Commun. Math. Sci. 1 423-436
[5]  
Sanz-Serna J.M.(2003)The heterogeneous multiscale methods Commun. Math. Sci. 1 87-132
[6]  
Calvo M.P.(2007)Heterogeneous multiscale methods: a review Commun. Comput. Phys. 2 367-450
[7]  
Sanz-Serna J.M.(2005)Heterogeneous multiscale methods for stiff ordinary differential equations Math. Comput. 74 1707-1742
[8]  
E W.(1974)Derivation and justification of equations in slow time (the stroboscopic method) Comput. Math. Math. Phys. 14 81-118
[9]  
E W.(1994)Backward error analysis of numerical integrators and symplectic methods Ann. Numer. Math. 1 107-132
[10]  
Engquist B.(2000)Long-time energy conservation of numerical methods for oscillatory differential equations SIAM J. Numer. Anal. 38 414-441