Symbolic computation for the qualitative theory of differential equations

被引:0
作者
Bo Huang
Wei Niu
Dongming Wang
机构
[1] Beihang University,LMIB
[2] Beihang University, School of Mathematical Sciences
[3] Beihang Hangzhou Innovation Institute Yuhang,Ecole Centrale de Pékin
[4] Beihang University,LMIB
[5] Centre National de la Recherche Scientifique, Institute of Artificial Intelligence
来源
Acta Mathematica Scientia | 2022年 / 42卷
关键词
biological systems; center-focus; limit cycles; qualitative analysis; symbolic computation; 34C07; 37G15; 68W30;
D O I
暂无
中图分类号
学科分类号
摘要
This paper provides a survey on symbolic computational approaches for the analysis of qualitative behaviors of systems of ordinary differential equations, focusing on symbolic and algebraic analysis for the local stability and bifurcation of limit cycles in the neighborhoods of equilibria and periodic orbits of the systems, with a highlight on applications to computational biology.
引用
收藏
页码:2478 / 2504
页数:26
相关论文
共 265 条
[1]  
Poincaré H(1881)Mémoire sur les courbes définies par une équation différentielle (I), (II) Journal de Mathématiques Pures et Appliquées 7 375-422
[2]  
Qin Y(1985)Computer deduction of stability criteria for a class of nonlinear systems J Qufu Normal University 2 1-11
[3]  
Zhang J(1991)Mechanical manipulation for a class of differential systems J Symbolic Comput 12 233-254
[4]  
Qin C(1984)Basic principles of mechanical theorem proving in elementary geometries J Sys Sci & Math Sci 4 207-235
[5]  
Wang D(1990)On the conditions of Kukles for the existence of a centre Bull London Math Soc 22 1-4
[6]  
Wu W-T(1990)On the paper of Jin and Wang concerning the conditions for a center in certain cubic systems Bull London Math Soc 22 5-12
[7]  
Jin X(1992)Computing centre conditions for certain cubic systems J Comput Appl Math 40 323-336
[8]  
Wang D(1994)Invariant algebraic curves and conditions for a centre Proc R Soc Edinb Sect A 124 1209-1229
[9]  
Christopher C(2001)Qualitative theory of the Kukles systems: (I) number of critical points Ann Differ Equations 17 275-286
[10]  
Lloyd N(2010)Kukles revisited: Advances in computing techniques Comput Math Appl 60 2797-2805