The Dirac Operator on Generalized Taub-NUT Spaces

被引:0
作者
Andrei Moroianu
Sergiu Moroianu
机构
[1] École Polytechnique,Centre de Mathématiques
[2] Institutul de Matematică al Academiei Române,undefined
[3] Şcoala Normală Superioară Bucharest,undefined
来源
Communications in Mathematical Physics | 2011年 / 305卷
关键词
Manifold; Line Bundle; Dirac Operator; Spin Structure; Conformal Factor;
D O I
暂无
中图分类号
学科分类号
摘要
We find sufficient conditions for the absence of harmonic L2 spinors on spin manifolds constructed as cone bundles over a compact Kähler base. These conditions are fulfilled for certain perturbations of the Euclidean metric, and also for the generalized Taub-NUT metrics of Iwai-Katayama, thus proving a conjecture of Vişinescu and the second author.
引用
收藏
页码:641 / 656
页数:15
相关论文
共 25 条
  • [1] Ammann B.(1998)The Dirac operator on collapsing Sémin. Théor. Spec. Géom., Univ. Grenoble 16 33-42
  • [2] Ammann B.(1998)-bundles Ann. Global Anal. Geom. 16 221-253
  • [3] Bär C.(2005)The Dirac Operator on Nilmanifolds and Collapsing Circle Bundles Math. Z. 249 545-580
  • [4] Bär C.(1992)Generalized Cylinders in Semi-Riemannian and Spin Geometry Commun. Math. Phys. 144 581-599
  • [5] Gauduchon P.(2005)Spineurs, opérateurs de Dirac et variations de métriques J. Phys. A – Math. Gen. 38 7005-7019
  • [6] Moroianu A.(2001)Gravitational and axial anomalies for generalized Euclidean Taub-NUT metrics Phys. Lett. B 502 229-234
  • [7] Bourguignon J.-P.(1974)Runge-Lenz operator for Dirac field in Taub-NUT background Adv. in Math. 14 1-55
  • [8] Gauduchon P.(1993)Harmonic spinors J. Geom. Phys. 12 55-75
  • [9] Cotăescu I.I.(1986)On extended Taub-NUT metrics Ann. Global Anal. Geom. 3 291-325
  • [10] Moroianu S.(2001)An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature Internat. Math. Res. Notices 2001 171-178