On the equiconvergence rate with the Fourier integral of the spectral expansion associated with the self-adjoint extension of the Sturm-Liouville operator with uniformly locally integrable potential

被引:0
作者
I. V. Sadovnichaya
机构
[1] Moscow State University,
来源
Differential Equations | 2009年 / 45卷
关键词
Spectral Function; Liouville Operator; Asymptotic Relation; FOURIER Integral; Spectral Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
In the space L2(ℝ), we consider the self-adjoint extension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{L} $$\end{document} of the Sturm-Liouville operator ly = −y″ + q(x)y whose potential q is uniformly locally integrable on ℝ, i.e., satisfies the condition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \omega _q (h) = \mathop {\sup }\limits_{x \in \mathbb{R}} \int\limits_x^{x + h} {\left| {q(t)} \right|dt < + \infty ,h > 0.} $$\end{document}. We study the problem on the equiconvergence rate of the spectral expansion associated with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{L} $$\end{document} of a function f ∈ L1(ℝ) with the Fourier integral on the entire real line. We obtain uniform estimates of the equiconvergence rate under some additional conditions on f or q.
引用
收藏
页码:520 / 525
页数:5
相关论文
共 5 条
[1]  
Kritskov L.V.(1995)Analytic Description of an Ordered Spectral Representation of the Space Differ. Uravn. 31 2038-2045
[2]  
Il’in V.A.(1995)(ℝ Differ. Uravn. 31 1957-1967
[3]  
Sadovnichaya I.V.(2006)) with Respect to a Schrödinger Operator with a Potential in the Kato Class Differ. Uravn. 42 188-201
[4]  
Il’in V.A.(1995)Equiconvergence, Uniform on the Whole Line ℝ, with the Fourier Integral of the Spectral Expansion Corresponding to a Self-Adjoint Extension of the Schrödinger Operator with a Uniformly Locally Integrable Potential Differ. Uravn. 31 1310-1322
[5]  
Antoniu I.(undefined)A New Estimate for the Spectral Function of a Self-Adjoint Extension in undefined undefined undefined-undefined