Filippov Lemma for a Class of Hadamard-Type Fractional Differential Inclusions

被引:0
作者
Aurelian Cernea
机构
[1] University of Bucharest,Faculty of Mathematics and Informatics
来源
Fractional Calculus and Applied Analysis | 2015年 / 18卷
关键词
Primary 34A60; Secondary 34A08; differential inclusion; fractional derivative; boundary value problem;
D O I
暂无
中图分类号
学科分类号
摘要
We study a class of fractional integro-differential inclusions with integral boundary conditions and establish a Filippov type existence result in the case of nonconvex set-valued maps.
引用
收藏
页码:163 / 171
页数:8
相关论文
共 10 条
  • [1] Aghajani A(2012)On the existence of solutions of fractional integro-differential equations Fract. Calc. Appl. Anal 15 44-69
  • [2] Jalilian Y(2012)Fractional differential inclusions with fractional separated boundary conditions Fract. Calc. Appl. Anal 15 362-382
  • [3] Trujillo J J(2014)A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations Fract. Calc. Appl. Anal 17 348-360
  • [4] Ahmad B(1967)Classical solutions of differential equations with multivalued right hand side SIAM J. Control 5 609-621
  • [5] Ntouyas S K(1892)Essai sur létude des fonctions donnees par leur development de Taylor J. Math. Pures Appl 8 101-186
  • [6] Ahmad B(2001)Hadamard-type fractional calculus J. Korean Math. Soc 38 1191-1204
  • [7] Ntouyas S K(undefined)undefined undefined undefined undefined-undefined
  • [8] Filippov A F(undefined)undefined undefined undefined undefined-undefined
  • [9] Hadamard J(undefined)undefined undefined undefined undefined-undefined
  • [10] Kilbas A A(undefined)undefined undefined undefined undefined-undefined