Exact simulation of final, minimal and maximal values of Brownian motion and jump-diffusions with applications to option pricing

被引:6
作者
Becker M. [1 ]
机构
[1] Saarland University, Campus C3 1
关键词
Brownian motion; Double barrier options; Importance sampling; Jump-diffusions; Monte Carlo simulation;
D O I
10.1007/s10287-007-0065-9
中图分类号
学科分类号
摘要
We introduce a method for generating (W x,T (μ,σ),m x, T (μ,σ),M x,T (μ,σ)), where W x,T (μ,σ) denotes the final value of a Brownian motion starting in x with drift μ and volatility σ at some final time T, m x T (μ,σ) = inf 0 t T W x t (μ, σ) and M x T (μ,σ) = sup 0 t T W x,t (μ,σ). By using the trivariate distribution of (W x,T (μ, σ),m x,T (μ, σ),M x,T (μ,σ)), we obtain a fast method which is unaffected by the well-known random walk approximation errors. The method is extended to jump-diffusion models. As sample applications we include Monte Carlo pricing methods for European double barrier knock-out calls with continuous reset conditions under both models. The proposed methods feature simple importance sampling techniques for variance reduction. © 2007 Springer-Verlag.
引用
收藏
页码:1 / 17
页数:16
相关论文
共 19 条
[1]  
Baldi P., Caramellino L., Iovino M.G., Pricing general barrier options: A numerical approach using sharp large deviations, Math Finance, 9, 4, pp. 293-322, (1999)
[2]  
Ball C.A., Torous W.N., The maximum likelihood estimation of security price volatility: Theory, evidence, and application to option pricing, J Bus, 57, 1, pp. 97-112, (1984)
[3]  
Becker M., Friedmann R., Kloner S., Sanddorf-Kohle W., A Hausman test for Brownian motion, AStA Adv Stat Anal, 91, 1, pp. 3-21, (2007)
[4]  
Beckers S., Variances of security price returns based on high, low, and closing prices, J Bus, 55, 1, pp. 97-112, (1983)
[5]  
Borodin A.N., Salminen P., Handbook of Brownian motion-facts and formulae, Probability and Its Applications, (2002)
[6]  
Brandt M.W., Diebold F.X., A no-arbitrage approach to range-based estimation of return covariances and correlations, Journal of Business, 79, 1, pp. 61-73, (2006)
[7]  
Cont R., Tankov P., Financial modelling with jump processes, CRC Financial Mathematics Series, (2004)
[8]  
Garman M.B., Klass M.J., On the estimation of security price volatilities from historical data, J Bus, 53, 1, pp. 67-78, (1980)
[9]  
Geman H., Yor M., Pricing and hedging double-barrier options: A probabilistic approach, Aktuarielle Ansätze für Finanz-Risiken: Beiträge Zum, 6, pp. 1227-1246, (1996)
[10]  
Joshi M.S., Leung T.S., Using Monte Carlo simulation and importance sampling to rapidly obtain jump-diffusion prices of continuous barrier options, J Comput Finance, 10, 4, pp. 93-105, (2007)