Error estimates for variational normal derivatives and Dirichlet control problems with energy regularization

被引:0
作者
Max Winkler
机构
[1] Technische Universität Chemnitz,Faculty of Mathematics
来源
Numerische Mathematik | 2020年 / 144卷
关键词
49J20; 65M60; 65N15; 35L67;
D O I
暂无
中图分类号
学科分类号
摘要
This article deals with error estimates for the finite element approximation of variational normal derivatives and, as a consequence, error estimates for the finite element approximation of Dirichlet boundary control problems with energy regularization. The regularity of the solution is carefully carved out exploiting weighted Sobolev and Hölder spaces. This allows to derive a sharp relation between the convergence rates for the approximation and the structure of the geometry, more precisely, the largest opening angle at the vertices of polygonal domains. Numerical experiments confirm that the derived convergence rates are sharp.
引用
收藏
页码:413 / 445
页数:32
相关论文
共 52 条
[1]  
Agoshkov VI(1985)Poincaré–Steklov operators and methods of partition of the domain in variational problems Comput. Process. Syst. 2 173-227
[2]  
Lebedev VI(2015)On the regularity of the solutions of Dirichlet optimal control problems in polygonal domains SIAM J. Control Optim. 53 3620-3641
[3]  
Apel Th(2018)Error estimates for Dirichlet control problems in polygonal domains: Quasi-uniform meshes Math. Control Relat. Fields 8 217-245
[4]  
Mateos M(2012)Finite element error estimates for Neumann boundary control problems on graded meshes Comput. Optim. Appl. 52 3-28
[5]  
Pfefferer J(2018)Error estimates for the postprocessing approach applied to neumann boundary control problems in polyhedral domains IMA J. Numer. Anal. 38 1984-2025
[6]  
Rösch A(2016)Error estimates for Neumann boundary control problems with energy regularization J. Numer. Math. 24 207-233
[7]  
Apel Th(2004)Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis Numer. Math. 99 1-24
[8]  
Mateos M(2006)Error estimates for the numerical approximation of Dirichlet boundary control of semilinear elliptic equations SIAM J. Control Optim. 45 1586-1611
[9]  
Pfefferer J(2017)Error bounds for a Dirichlet boundary control problem based on energy spaces Math. Comp. 86 1103-1126
[10]  
Rösch A(2011)Local energy estimates for the finite element method on sharply varying grids Math. Comp. 80 1-9