Comparison of antibacterial properties of commercial bone cements and fillers with a zinc-based glass polyalkenoate cement

被引:0
作者
A. W. Wren
N. M. Cummins
M. R. Towler
机构
[1] Alfred University,Inamori School of Engineering
[2] University of Limerick,Materials and Surface Science Institute
来源
Journal of Materials Science | 2010年 / 45卷
关键词
Tobramycin; Antibacterial Property; Polyacrylic Acid; Antibacterial Efficacy; Agar Diffusion Test;
D O I
暂无
中图分类号
学科分类号
摘要
Postoperative infection following invasive surgical procedures is a significant cause for concern, particularly in spinal reconstructive surgery. The objective of this study is to compare the antibacterial efficacy of a novel zinc-based glass polyalkenoate cement (Zn-GPC) based on 0.04SrO–0.12CaO–0.36ZnO–0.48SiO2 glass, to a number of commercially available bone cements and fillers including Simplex P + Tobramycin (STob), Spineplex (Spine) and Novabone Putty (NPut). The agar diffusion test was performed on each material against Escherichia coli, Staphlococcus epidermidis, Pseudomonas aeruginosa and Staphlococcus Aureus. STob was found to produce large inhibition zones in each of the bacteria tested and was statistically significantly higher than any other material. The experimental Zn-GPC (BTSC) was found to exhibit antibacterial properties in both E. coli and S. epidermidis. Neither Spine nor NPut showed any inhibitory effect in any of the bacteria tested. A study was also performed to determine the effect of antibiotic release from STob and Zn-GPC (BTob) containing the antibiotic tobramycin (Tob). Antibacterial efficacy was found to increase with respect to maturation with BTob, whereas STob was found to decrease significantly over the time period of 0–14 days. The final objective is to investigate any change in agar composition during the agar-diffusion test. Little change was observed for STob as antibiotic release cannot be determined using EDX. There was, however, an increase in Zn levels when analysing BTSC which suggests that Zn is playing a role in the antimicrobial nature of the Zn-GPC. No significant changes were observed for Spine or NPut.
引用
收藏
页码:5244 / 5251
页数:7
相关论文
共 171 条
[1]  
Subbiahdoss G(2009)undefined Acta Biomater 5 1399-undefined
[2]  
Kuijer R(2006)undefined Injury 37 S95-undefined
[3]  
Grijpma DW(1997)undefined J Microbiol Meth 30 141-undefined
[4]  
Van der Mei HC(1998)undefined Curr Opin Solid State Mater Sci 3 252-undefined
[5]  
Busscher HJ(2006)undefined Int Orthop 30 532-undefined
[6]  
Diefenbeck M(2008)undefined J Arthroplasty 23 110-undefined
[7]  
Muckley T(2008)undefined J Cont Rel 130 202-undefined
[8]  
Hofmann GO(2006)undefined Dent Mater 22 647-undefined
[9]  
An YH(2006)undefined Postepy Hig Med Dosw 60 416-undefined
[10]  
Friedman RJ(1993)undefined J Dent Res 72 1310-undefined