Finite-Dimensional Bicomplex Hilbert Spaces

被引:0
作者
Raphaël Gervais Lavoie
Louis Marchildon
Dominic Rochon
机构
[1] Université du Québec à Trois-Rivières,Département de physique
[2] Université du Québec à Trois-Rivières,Département de mathématiques et d’informatique
来源
Advances in Applied Clifford Algebras | 2011年 / 21卷
关键词
16D10; 30G35; 46C05; 46C50; Bicomplex numbers; bicomplex quantum mechanics; generalized quantum mechanics; Hilbert spaces; bicomplex matrix; bicomplex linear algebra; generalized linear algebra;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is a detailed study of finite-dimensional modules defined on bicomplex numbers. A number of results are proved on bicomplex square matrices, linear operators, orthogonal bases, self-adjoint operators and Hilbert spaces, including the spectral decomposition theorem. Applications to concepts relevant to quantum mechanics, like the evolution operator, are pointed out.
引用
收藏
页码:561 / 581
页数:20
相关论文
共 6 条
[1]  
Rochon D.(2004)Bicomplex quantum mechanics: I. The generalized Schrödinger equation Adv. appl. Clifford alg. 14 231-248
[2]  
Tremblay S.(2006)Bicomplex quantum mechanics: II. The Hilbert space Adv. appl. Clifford alg. 16 135-157
[3]  
Rochon D.(2004)On algebraic properties of bicomplex and hyperbolic numbers Analele Universitatii Oradea, Fasc. Matematica 11 71-110
[4]  
Tremblay S.(undefined)undefined undefined undefined undefined-undefined
[5]  
Rochon D.(undefined)undefined undefined undefined undefined-undefined
[6]  
Shapiro M.(undefined)undefined undefined undefined undefined-undefined