On dirichlet series related to certain cusp forms

被引:0
作者
Kačénas A. [1 ]
Laurinčikas A. [1 ]
机构
[1] Vilnius University, 2006 Vilnius
关键词
Random Element; Cusp Form; Dirichlet Series; Convergent Series; Euler Product;
D O I
10.1007/BF02465545
中图分类号
学科分类号
摘要
[No abstract available]
引用
收藏
页码:64 / 76
页数:12
相关论文
共 24 条
[1]  
Bagchi B., The Statistical Behaviour and Universality Properties of the Riemann Zeta-function and Other Allied Dirichlet Series, (1981)
[2]  
Bagchi B., Joint universality theorem for Dirichlet L-functions, Math. Z, 181, pp. 319-334, (1982)
[3]  
Dcligne P., La conjecture de Weil, Inst. Hautes Études Sci. Publ. Math., 53, pp. 273-307, (1974)
[4]  
Gonek S.M., Analytic Properties of Zêta and L-functions, (1979)
[5]  
Hecke E., Über Modulfunktionen und Dirichletsche Reihen mit Eulerscher Produktentwicklung. Teil I und u, Math Ann., 114, pp. 1-28, (1937)
[6]  
Jutila M., On the approximate functional equation for ξ<sup>2</sup>(s) and other Dirichlet series, Quarterly J. Math. Oxford Ser. 2, 37, pp. 193-209, (1986)
[7]  
Laurineikas A., Distribution of values of generating Dirichlet series of multiplicative functions, Liet. Matem. Rink., 22, 1, pp. 101-111, (1982)
[8]  
Laurincikas A., Universality theorem, Liet. Matem. Rink., 23, 3, pp. 53-62, (1983)
[9]  
Laurineikas A., Limit Theorems for the Riemann Zeta-Function, (1996)
[10]  
Laurinoikas A., The universality of the Lerch zeta-function, Lith. Math. J., 37, 3, pp. 275-280, (1997)