Free Random Variables Followed by the Semicircular Law

被引:0
作者
Ilwoo Cho
机构
[1] 421 Ambrose Hall,Department of Mathematics and Statistics
[2] St. Ambrose University,undefined
来源
Complex Analysis and Operator Theory | 2023年 / 17卷
关键词
Free probability; Semicircular elements; Free-isomorphisms; Groups; Group dynamical systems; Crossed product algebras; 46L10; 46L54; 47L55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study certain free random variables having their free distributions, dictated by the semicircular law, in a certain sense. In particular, we are interested in operators T, which are not self-adjoint, but whose free distributions are followed by the semicircular law in the sense that: all n-th joint free moments of T,T∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ T,T^{*}\right\} $$\end{document} are identical to the n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{2}$$\end{document}-th Catalan numbers cn2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_{\frac{n}{2}}}$$\end{document}, for all n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\in \mathbb {N}}$$\end{document}, where cn2=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{\frac{n}{2}}=0$$\end{document}, whenever n2∉N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{2}\notin \mathbb {N}$$\end{document}. The construction of such free random variables, itself, is one of the main results of this paper. We consider free-distributional data determined by such operators.
引用
收藏
相关论文
共 32 条
  • [1] Ahsanullah M(2016)Some inferences on semicircular distribution J. Stat. Theo. Appl. 15 207-213
  • [2] Bercovici H(1995)Superconvergence to the central limit and failure of the Cramer theorem for free random variables Probab. Theory Relat. Fields 103 215-222
  • [3] Voiculescu D(2017)Noncommutative Probability of Type Int. J. Math. 28 1750010-120
  • [4] Bozejko M(2015)An extended Anyon Fock space and non-commutative Meixner-type orthogonal polynomials in the infinite-dimensional case Uspekhi Math. Nauk. 70 75-565
  • [5] Ejsmont W(2017)Acting semicircular elements induced by orthogonal projections on von Neumann algebras Mathematics 5 74-1695
  • [6] Hasebe T(2017)Semicircular families in free product Banach Complex. Anal. Oper. Theory 11 507-703
  • [7] Bozheuiko M(2018)-algebras induced by Complex Anal. Oper. Theory 12 1657-535
  • [8] Litvinov EV(2017)-Adic number fields over primes Opuscula Math. 35 665-379
  • [9] Rodionova IV(2018)Semicircular-like laws and the semicircular law induced by orthogonal projections Opuscula Math. 38 501-221
  • [10] Cho I(2018)Semicircular elements induced by Commun. Algebra 349 372-380