On the tangent bundle of a hypersurface in a Riemannian manifold

被引:0
作者
Zhonghua Hou
Lei Sun
机构
[1] Dalian University of Technology,Institute of Mathematics
[2] Northeast Forestry University,Department of Mathematics
来源
Chinese Annals of Mathematics, Series B | 2015年 / 36卷
关键词
Hypersurfaces; Tangent bundle; Mean curvature vector; Sasaki metric; Almost complex structure; Kählerian form; 32Q60; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
Let (Mn, g) and (Nn+1, G) be Riemannian manifolds. Let TMn and TNn+1 be the associated tangent bundles. Let f: (Mn, g) → (Nn+1,G) be an isometrical immersion with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g = f*G,F = (f,df):(TM^n ,\bar g) \to (TN^{n + 1} ,G_s )$$\end{document} be the isometrical immersion with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar g = F*G_s$$\end{document} where (df)x: TxM → Tf(x)N for any x ∈ M is the differential map, and Gs be the Sasaki metric on TN induced from G. This paper deals with the geometry of TMn as a submanifold of TNn+1 by the moving frame method. The authors firstly study the extrinsic geometry of TMn in TNn+1. Then the integrability of the induced almost complex structure of TM is discussed.
引用
收藏
页码:579 / 602
页数:23
相关论文
共 23 条
[1]  
Deshmukh S.(2007)Tangent bundle of the hypersurfaces in a Euclidean space Acta. Math. Acad. Paedagog. Nyházi (N.S.) 23 71-87
[2]  
Al-Odan H.(1975)On the tangent sphere bundle of a 2-sphere Tohoku Math. J. 27 49-56
[3]  
Shaman T. A.(1998)Killing vector fields on tangent sphere bundles Kodai Math. J. 21 61-72
[4]  
Klingenberg W.(1998)Geodesics and Killing vector fields on the tangent sphere bundle Nagoya Math. J. 151 91-97
[5]  
Sasaki S.(1971)Curvature of the induced Riemannian metric of the tangent bundle of Riemannian manifold J. Reine Angew. Math. 250 124-129
[6]  
Konno T.(1982)Complete hypersurfaces in the space form with three principal curvatures Math. Z. 179 345-354
[7]  
Konno T.(2006)Cheeger Gromoll type metrics on the tangent bundle Sci. Ann. Univ. Agric. Sci. Vet. Med. 49 257-268
[8]  
Tanno S.(2008)Some aspects on the geometry of the tangent bundles and tangent shpere bundles of a Riemannian manifold Mediterr. J. Math. 5 43-59
[9]  
Kowalski O.(1988)Riemannian metrics on tangent bundles Ann. Math. Pura Appl. 150 1-20
[10]  
Miyaoka R.(1959)Isometries on complex-product spaces Tensor, New Series 9 47-61