Hörmander’s Hypoelliptic Theorem for Nonlocal Operators

被引:0
作者
Zimo Hao
Xuhui Peng
Xicheng Zhang
机构
[1] Wuhan University,School of Mathematics and Statistics
[2] Hunan Normal University,MOE
来源
Journal of Theoretical Probability | 2021年 / 34卷
关键词
Hörmander’s conditions; Malliavin calculus; Hypoellipticity; Nonlocal operators; 60H07; 60H10; 60H30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we show the Hörmander hypoelliptic theorem for nonlocal operators by a purely probabilistic method: the Malliavin calculus. Roughly speaking, under general Hörmander’s Lie bracket conditions, we show the regularization effect of discontinuous Lévy noises for possibly degenerate stochastic differential equations with jumps. To treat the large jumps, we use the perturbation argument together with interpolation techniques and some short time asymptotic estimates of the semigroup. As an application, we show the existence of fundamental solutions for operator ∂t-K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _t-{{\mathscr {K}}}$$\end{document}, where K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {K}}}$$\end{document} is the following nonlocal kinetic operator: Kf(x,v)=p.v.∫Rd(f(x,v+w)-f(x,v))κ(x,v,w)|w|d+αdw+v·∇xf(x,v)+b(x,v)·∇vf(x,v).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {{\mathscr {K}}}f(x,\mathrm{v})= & {} \mathrm{p.v.}\int _{{{\mathbb {R}}}^d}(f(x,\mathrm{v}+w)-f(x,\mathrm{v}))\frac{\kappa (x,\mathrm{v},w)}{|w|^{d+\alpha }}\, {\mathord {\mathrm{d}}}w \\&+\mathrm{v}\cdot \nabla _x f(x,\mathrm{v})+b(x,\mathrm{v})\cdot \nabla _\mathrm{v} f(x,\mathrm{v}). \end{aligned}$$\end{document}Here κ0-1⩽κ(x,v,w)⩽κ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa _0^{-1}\leqslant \kappa (x,\mathrm{v},w)\leqslant \kappa _0$$\end{document} belongs to Cb∞(R3d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty _b({{\mathbb {R}}}^{3d})$$\end{document} and is symmetric in w, p.v. stands for the Cauchy principal value, and b∈Cb∞(R2d;Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in C^\infty _b({{\mathbb {R}}}^{2d};{{\mathbb {R}}}^d)$$\end{document}.
引用
收藏
页码:1870 / 1916
页数:46
相关论文
共 29 条
[1]  
Bally V(2011)Integration by parts formula and applications to equations with jumps Prob. Theory Relat. Fields 151 613-657
[2]  
Clément E(1983)Calcul des variations stochastiques et processus de sauts Z. Wahrsch. Verw. Gebiete 63 147-235
[3]  
Bismut JM(2009)Smooth densities for stochastic differential equations with jumps Stoch. Process. Appl. 119 1416-1435
[4]  
Cass T(2018)-maximal hypoelliptic regularity of nonlocal kinetic Fokker–Planck operators J. Math. Pures Appl. 116 52-87
[5]  
Chen ZQ(2011)On Malliavin’s proof of Hörmander’s theorem Bull. Sci. Math. 135 650-666
[6]  
Zhang X(1967)Hypoelliptic second order differential equations Acta Math. 119 147-171
[7]  
Harier M(2006)Malliavin calculus on the Wiener–Poisson space and its application to canonical SDE with jumps Stoch. Process. Appl. 116 1743-1769
[8]  
Hörmander L(2018)Smooth density and its short time estimate for jump process determined by SDE Stoch. Process. Appl. 128 3181-3219
[9]  
Ishikawa Y(2001)On the smoothness of PDF of solutions to sde of jump type Int. J. Differ. Equ. Appl. 2 141-197
[10]  
Kunita H(2013)Nondegenerate SDE’s with jumps and their hypoelliptic properties J. Math. Soc. Jpn. 65 993-1035