Screening of wheat (Triticum aestivum L.) genotypes for drought tolerance using polyethylene glycol

被引:3
|
作者
Muhammad Adnan Bukhari
Adnan Noor Shah
Shah Fahad
Javaid Iqbal
Fahim Nawaz
Abdul Manan
Mohammad Safdar Baloch
机构
[1] The Islamia University of Bahawalpur,Department of Agronomy, Faculty of Agriculture and Environment
[2] Khwaja Fareed University of Engineering and Information Technology,Department of Agricultural Engineering
[3] Hainan University,Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops
[4] University of Haripur,Department of Agronomy
[5] Ghazi University,Department of Agronomy
[6] Muhammad Nawaz Shareef Agriculture University Multan,Department of Agronomy
[7] Ghazi University,Department of Horticulture
[8] Gomal University,Department of Agronomy, Faculty of Agriculture
关键词
Wheat; Screening; Drought tolerance; Growth and development;
D O I
10.1007/s12517-021-09073-0
中图分类号
学科分类号
摘要
Drought is one of the major and most detrimental abiotic stresses, and uncertainty in precipitation pattern further kindled the situation. Based upon the serious threat, we speculated that to reduce time to see required results, screening of different genotypes at a very early development stage can come up with the identification of potential genotypes and can be used for further breeding. Therefore, this study was conducted to screen ten wheat genotypes viz; V0-7096, V0-7076, V0-5082, V0-5066, Sehar-06, Inqlab-91, FSD-08, Lasani-08, Chakwal-50 and AARI-11 for drought resistance. Firstly, under laboratory conditions, these genotypes were subjected to drought stress in Petri plates by application of polyethylene glycol (PEG-6000) solution maintaining − 0.17, − 0.32, − 0.47 and –0.62 MPa osmotic potential. Following this, pot experiment in controlled glass house was conducted at 25%, 50% and 85% field capacity (FC) to further examine the response of wheat genotypes under drought stress. The present study concluded that at the osmotic potential of − 0.62 MPa, Chakwal-50 performed better and attained highest values of emergence index (EI) 27.16%, mean emergence time (MET) 6%, promptness index (PI) 6.50%, germination percentage (GP) 65%, germination stress tolerance index (GSI) 74.35%, plant height stress tolerance index (PHSI) 85.76%, root length stress tolerance index (RLSI) 124.90% and dry matter stress tolerance indices (DMSI) 90.39%, while Sehar-06 showed the lowest values in these traits and showed reduction of 22.0%, 4.20%, 4.33%, 30%, 50.12%, 47.71%, 71.23% and 26.90% respectively as compared to control. Remaining wheat genotypes were intermediate in tolerating drought stress. Overall research study concluded that under drought stress conditions, Chakwal-50 performed best than all other wheat genotypes and could be used for further investigation to develop drought-resistant wheat genotype for maximum production.
引用
收藏
相关论文
共 50 条
  • [21] Evaluation of Drought Tolerance of Some Wheat (Triticum aestivum L.) Genotypes through Phenology, Growth, and Physiological Indices
    Chowdhury, M. Kaium
    Hasan, M. A.
    Bahadur, M. M.
    Islam, Md Rafiqul
    Hakim, Md Abdul
    Iqbal, Muhammad Aamir
    Javed, Talha
    Raza, Ali
    Shabbir, Rubab
    Sorour, Sobhy
    Elsanafawy, Norhan E. M.
    Anwar, Sultana
    Alamri, Saud
    El Sabagh, Ayman
    Islam, Mohammad Sohidul
    AGRONOMY-BASEL, 2021, 11 (09):
  • [22] MORPHO-PHYSIOLOGICAL ASSESSMENT OF WHEAT (TRITICUM AESTIVUM L.) GENOTYPES FOR DROUGHT STRESS TOLERANCE AT SEEDLING STAGE
    Faisal, Summiya S. M.
    Mujtaba, M. A. Khan
    Mahboob, Wajid
    PAKISTAN JOURNAL OF BOTANY, 2017, 49 (02) : 445 - 452
  • [23] Inheritance of drought tolerance indicators in bread wheat (Triticum aestivum L.) using a diallel technique
    Farshadfar, Eztollah
    Rasoli, Valiollah
    Teixeira da Silva, Jaime A.
    Farshadfar, Mohsen
    AUSTRALIAN JOURNAL OF CROP SCIENCE, 2011, 5 (07) : 870 - 878
  • [24] Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.)
    Devi, Rachana
    Kaur, Narinder
    Gupta, Anil Kumar
    INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 2012, 49 (04) : 257 - 265
  • [25] Screening of recombinant inbred lines for salinity tolerance in bread wheat (Triticum aestivum L.)
    Azadi, Amin
    Hervan, Eslam Majidi
    Mohammadi, Seyed Abolghasem
    Moradi, Foad
    Nakhoda, Babak
    Vahabzade, Mojtaba
    Mardi, Mohsen
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2011, 10 (60): : 12875 - 12881
  • [26] Substitution analysis of drought tolerance in wheat (Triticum aestivum L)
    Farshadfar, E
    Koszegi, B
    Tischner, T
    Sutka, J
    PLANT BREEDING, 1995, 114 (06) : 542 - 544
  • [27] Multivariate assessment to determine drought tolerant genotypes to combat drought risk in wheat (Triticum aestivum L.)
    Sattar, Saira
    Kashif, Muhammad
    Afzal, Rabail
    Ali, Muazim
    ASIAN JOURNAL OF AGRICULTURE AND BIOLOGY, 2019, 7 (04): : 519 - 530
  • [28] Silicon Improves the Tolerance to Water-Deficit Stress Induced by Polyethylene Glycol in Wheat (Triticum aestivum L.) Seedlings
    Z. F. Pei
    D. F. Ming
    D. Liu
    G. L. Wan
    X. X. Geng
    H. J. Gong
    W. J. Zhou
    Journal of Plant Growth Regulation, 2010, 29 : 106 - 115
  • [29] Genetic Dissection of Drought Tolerance of Elite Bread Wheat (Triticum aestivum L.) Genotypes Using Genome Wide Association Study in Morocco
    El Gataa, Zakaria
    Samir, Karima
    Tadesse, Wuletaw
    PLANTS-BASEL, 2022, 11 (20):
  • [30] Metabolomics Response for Drought Stress Tolerance in Chinese Wheat Genotypes (Triticum aestivum)
    Guo, Xiaoyang
    Xin, Zeyu
    Yang, Tiegang
    Ma, Xingli
    Zhang, Yang
    Wang, Zhiqiang
    Ren, Yongzhe
    Lin, Tongbao
    PLANTS-BASEL, 2020, 9 (04):