Parameterized Domination in Circle Graphs

被引:0
作者
Nicolas Bousquet
Daniel Gonçalves
George B. Mertzios
Christophe Paul
Ignasi Sau
Stéphan Thomassé
机构
[1] CNRS,AlGCo project
[2] LIRMM,team
[3] Durham University,School of Engineering and Computing Sciences
[4] U. Lyon,Laboratoire LIP
[5] CNRS,undefined
[6] ENS Lyon,undefined
[7] INRIA,undefined
[8] UCBL,undefined
来源
Theory of Computing Systems | 2014年 / 54卷
关键词
Circle graphs; Domination problems; Parameterized complexity; Parameterized algorithms; Dynamic programming; Constrained domination;
D O I
暂无
中图分类号
学科分类号
摘要
A circle graph is the intersection graph of a set of chords in a circle. Keil [Discrete Appl. Math., 42(1):51–63, 1993] proved that Dominating Set, Connected Dominating Set, and Total Dominating Set are NP-complete in circle graphs. To the best of our knowledge, nothing was known about the parameterized complexity of these problems in circle graphs. In this paper we prove the following results, which contribute in this direction: Dominating Set, Independent Dominating Set, Connected Dominating Set, Total Dominating Set, and Acyclic Dominating Set are W[1]-hard in circle graphs, parameterized by the size of the solution.Whereas both Connected Dominating Set and Acyclic Dominating Set are W[1]-hard in circle graphs, it turns out that Connected Acyclic Dominating Set is polynomial-time solvable in circle graphs.If T is a given tree, deciding whether a circle graph G has a dominating set inducing a graph isomorphic to T is NP-complete when T is in the input, and FPT when parameterized by t=|V(T)|. We prove that the FPT algorithm runs in subexponential time, namely \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{\mathcal{O}(t \cdot\frac{\log\log t}{\log t})} \cdot n^{\mathcal{O}(1)}$\end{document}, where n=|V(G)|.
引用
收藏
页码:45 / 72
页数:27
相关论文
共 41 条
[1]  
Alber J.(2002)Fixed parameter algorithms for dominated set and related problems on planar graphs Algorithmica 33 461-493
[2]  
Bodlaender H.L.(2009)On problems without polynomial kernels J. Comput. Syst. Sci. 75 423-434
[3]  
Fernau H.(2011)Dominating set is fixed parameter tractable in claw-free graphs Theor. Comput. Sci. 412 6982-7000
[4]  
Kloks T.(1989)The Hamiltonian circuit problem for circle graphs is NP-complete Inf. Process. Lett. 32 1-2
[5]  
Niedermeier R.(1993)Independence and domination in polygon graphs Discrete Appl. Math. 44 65-77
[6]  
Bodlaender H.L.(2009)On the parameterized complexity of multiple-interval graph problems Theor. Comput. Sci. 410 53-61
[7]  
Downey R.G.(2009)Exponential time algorithms for the minimum dominating set problem on some graph classes ACM Trans. Algorithms 6 1-273
[8]  
Fellows M.R.(1973)Algorithms for a maximum clique and a maximum independent set of a circle graph Networks 3 261-6
[9]  
Hermelin D.(2008)Minimum weight feedback vertex sets in circle graphs Inf. Process. Lett. 107 1-165
[10]  
Cygan M.(2000)Acyclic domination Discrete Math. 222 151-63