Mittag-Leffler function and fractional differential equations

被引:0
|
作者
Katarzyna Górska
Ambra Lattanzi
Giuseppe Dattoli
机构
[1] Polish Academy of Sciences ul,H. Niewodniczański Institute of Nuclear Physics
[2] ENEA - Centro Ricerche Frascati,undefined
关键词
Primary 35R11; Secondary 26A33; 05A40; 60G52; fractional Fokker-Planck equation; fractional calculus; moments; umbral (operational) method;
D O I
暂无
中图分类号
学科分类号
摘要
We adopt a procedure of operational-umbral type to solve the (1 + 1)-dimensional fractional Fokker-Planck equation in which time fractional derivative of order α (0 < α < 1) is in the Riemann-Liouville sense. The technique we propose merges well documented operational methods to solve ordinary FP equation and a redefinition of the time by means of an umbral operator. We show that the proposed method allows significant progress including the handling of operator ordering.
引用
收藏
页码:220 / 236
页数:16
相关论文
共 50 条
  • [31] The extended Mittag-Leffler function via fractional calculus
    Rahman, Gauhar
    Baleanu, Dumitru
    Al Qurashi, Maysaa
    Purohit, Sunil Dutt
    Mubeen, Shahid
    Arshad, Muhammad
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08): : 4244 - 4253
  • [32] CERTAIN FRACTIONAL OPERATORS OF EXTENDED MITTAG-LEFFLER FUNCTION
    Nadir, Aneela
    Khan, Adnan
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2019, 10 (01): : 12 - 26
  • [33] Solving Nonlinear Fractional Differential Equation by Generalized Mittag-Leffler Function Method
    A.A.M.Arafa
    Z.Rida
    A.A.Mohammadein
    H.M.Ali
    Communications in Theoretical Physics, 2013, 59 (06) : 661 - 663
  • [34] Solving Nonlinear Fractional Differential Equation by Generalized Mittag-Leffler Function Method
    Arafa, A. A. M.
    Rida, S. Z.
    Mohammadein, A. A.
    Ali, H. M.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 59 (06) : 661 - 663
  • [35] On the generalized fractional integrals of the generalized Mittag-Leffler function
    Ahmed, Shakeel
    SPRINGERPLUS, 2014, 3
  • [36] Fractional Differintegral Operators of The Generalized Mittag-Leffler Function
    Gupta, Anjali
    Parihar, C. L.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2015, 33 (01): : 137 - 144
  • [37] Mixed Fractional Differential Equations and Generalized Operator-Valued Mittag-Leffler Functions
    V. N. Kolokol’tsov
    Mathematical Notes, 2019, 106 : 740 - 756
  • [38] Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel
    Yavuz, Mehmet
    Ozdemir, Necati
    Baskonus, Haci Mehmet
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (06):
  • [39] Fixed point approach to the Mittag-Leffler kernel-related fractional differential equations
    Hammad, Hasanen A.
    Isik, Huseyin
    Aydi, Hassen
    De la Sen, Manuel
    AIMS MATHEMATICS, 2023, 8 (04): : 8633 - 8649