Mittag-Leffler function and fractional differential equations

被引:0
|
作者
Katarzyna Górska
Ambra Lattanzi
Giuseppe Dattoli
机构
[1] Polish Academy of Sciences ul,H. Niewodniczański Institute of Nuclear Physics
[2] ENEA - Centro Ricerche Frascati,undefined
关键词
Primary 35R11; Secondary 26A33; 05A40; 60G52; fractional Fokker-Planck equation; fractional calculus; moments; umbral (operational) method;
D O I
暂无
中图分类号
学科分类号
摘要
We adopt a procedure of operational-umbral type to solve the (1 + 1)-dimensional fractional Fokker-Planck equation in which time fractional derivative of order α (0 < α < 1) is in the Riemann-Liouville sense. The technique we propose merges well documented operational methods to solve ordinary FP equation and a redefinition of the time by means of an umbral operator. We show that the proposed method allows significant progress including the handling of operator ordering.
引用
收藏
页码:220 / 236
页数:16
相关论文
共 50 条
  • [21] EXISTENCE AND STABILITY RESULTS OF FRACTIONAL DIFFERENTIAL EQUATIONS MITTAG-LEFFLER KERNEL
    Abbas, Ahsan
    Mehmood, Nayyar
    Akgul, Ali
    Amacha, Inas
    Abdeljawad, Thabet
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (07N08)
  • [22] On the oscillation of Caputo fractional differential equations with Mittag-Leffler nonsingular kernel
    Abdalla, Bahaaeldin
    Abdeljawad, Thabet
    CHAOS SOLITONS & FRACTALS, 2019, 127 : 173 - 177
  • [23] Fractional Calculus of a Unified Mittag-Leffler Function
    Prajapati, J. C.
    Nathwani, B. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2015, 66 (08) : 1267 - 1280
  • [24] The Role of the Mittag-Leffler Function in Fractional Modeling
    Rogosin, Sergei
    MATHEMATICS, 2015, 3 (02) : 368 - 381
  • [25] Mittag-Leffler function for discrete fractional modelling
    Wu, Guo-Cheng
    Baleanu, Dumitru
    Zeng, Sheng-Da
    Luo, Wei-Hua
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) : 99 - 102
  • [26] Fractional Calculus of a Unified Mittag-Leffler Function
    J. C. Prajapati
    B. V. Nathwani
    Ukrainian Mathematical Journal, 2015, 66 : 1267 - 1280
  • [27] Maximum principles for fractional differential equations derived from Mittag-Leffler functions
    Nieto, Juan J.
    APPLIED MATHEMATICS LETTERS, 2010, 23 (10) : 1248 - 1251
  • [28] Generalized Mittag-Leffler Type Function: Fractional Integrations and Application to Fractional Kinetic Equations
    Nisar, Kottakkaran Sooppy
    FRONTIERS IN PHYSICS, 2020, 8
  • [29] ON FRACTIONAL MITTAG-LEFFLER OPERATORS
    Ansari, Alireza
    Darani, Mohammadreza Ahmadi
    Moradi, Mohammad
    REPORTS ON MATHEMATICAL PHYSICS, 2012, 70 (01) : 119 - 131
  • [30] On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations
    Kilbas, AA
    Saigo, M
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1996, 4 (04) : 355 - 370