Mittag-Leffler function and fractional differential equations

被引:0
作者
Katarzyna Górska
Ambra Lattanzi
Giuseppe Dattoli
机构
[1] Polish Academy of Sciences ul,H. Niewodniczański Institute of Nuclear Physics
[2] ENEA - Centro Ricerche Frascati,undefined
来源
Fractional Calculus and Applied Analysis | 2018年 / 21卷
关键词
Primary 35R11; Secondary 26A33; 05A40; 60G52; fractional Fokker-Planck equation; fractional calculus; moments; umbral (operational) method;
D O I
暂无
中图分类号
学科分类号
摘要
We adopt a procedure of operational-umbral type to solve the (1 + 1)-dimensional fractional Fokker-Planck equation in which time fractional derivative of order α (0 < α < 1) is in the Riemann-Liouville sense. The technique we propose merges well documented operational methods to solve ordinary FP equation and a redefinition of the time by means of an umbral operator. We show that the proposed method allows significant progress including the handling of operator ordering.
引用
收藏
页码:220 / 236
页数:16
相关论文
共 64 条
  • [21] Torre A(1973)Expansions in terms of heat polynmials and associated functions J. Math. Anal. Appl 42 684-760
  • [22] Vázquez L(1958)On the foundations of combinatorial theory. VIII. Finite operator calculus Philos. Mag 3 497-503
  • [23] Dattoli G(2016)Taylor’ s theorem for shift operators Math. Model. Nat. Phenom 11 18-33
  • [24] Srivastava HM(1996)Comb model with slow and ultraslow diffusion Physica A 232 180-188
  • [25] Zhukovsky KV(undefined)On the Cole-Cole relaxation function and related Mittag-Leffler distribution undefined undefined undefined-undefined
  • [26] Garrappa R(undefined)undefined undefined undefined undefined-undefined
  • [27] Popolizio M(undefined)undefined undefined undefined undefined-undefined
  • [28] Gorenflo R(undefined)undefined undefined undefined undefined-undefined
  • [29] Mainardi F(undefined)undefined undefined undefined undefined-undefined
  • [30] Górska K(undefined)undefined undefined undefined undefined-undefined