For each isometry V acting on some Hilbert space and a pair of vectors f and g in the same Hilbert space, we associate a nonnegative number c(V; f, g) defined by c(V;f,g)=(‖f‖2-‖V∗f‖2)‖g‖2+|1+⟨V∗f,g⟩|2.\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} c(V; f,g) = (\Vert f\Vert ^2 - \Vert V^*f\Vert ^2) \Vert g\Vert ^2 + |1 + \langle V^*f , g\rangle |^2. \end{aligned}$$\end{document}We prove that the rank-one perturbation V+f⊗g\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V + f \otimes g$$\end{document} is left-invertible if and only if c(V;f,g)≠0.\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} c(V;f,g) \ne 0. \end{aligned}$$\end{document}We also consider examples of rank-one perturbations of isometries that are shift on some Hilbert space of analytic functions. Here, shift refers to the operator of multiplication by the coordinate function z. Finally, we examine D+f⊗g\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$D + f \otimes g$$\end{document}, where D is a diagonal operator with nonzero diagonal entries and f and g are vectors with nonzero Fourier coefficients. We prove that D+f⊗g\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$D + f\otimes g$$\end{document} is left-invertible if and only if D+f⊗g\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$D+f\otimes g$$\end{document} is invertible.