Left-Invertibility of Rank-One Perturbations

被引:0
|
作者
Susmita Das
Jaydeb Sarkar
机构
[1] Indian Statistical Institute,Statistics and Mathematics Unit
来源
Complex Analysis and Operator Theory | 2022年 / 16卷
关键词
Left-invertible operators; Rank-one perturbations; Shifts; Isometries; Diagonal operators; Reproducing kernel Hilbert spaces; 47A55; 47B37; 30H10; 47B32; 46B50; 47B07;
D O I
暂无
中图分类号
学科分类号
摘要
For each isometry V acting on some Hilbert space and a pair of vectors f and g in the same Hilbert space, we associate a nonnegative number c(V; f, g) defined by c(V;f,g)=(‖f‖2-‖V∗f‖2)‖g‖2+|1+⟨V∗f,g⟩|2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} c(V; f,g) = (\Vert f\Vert ^2 - \Vert V^*f\Vert ^2) \Vert g\Vert ^2 + |1 + \langle V^*f , g\rangle |^2. \end{aligned}$$\end{document}We prove that the rank-one perturbation V+f⊗g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V + f \otimes g$$\end{document} is left-invertible if and only if c(V;f,g)≠0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} c(V;f,g) \ne 0. \end{aligned}$$\end{document}We also consider examples of rank-one perturbations of isometries that are shift on some Hilbert space of analytic functions. Here, shift refers to the operator of multiplication by the coordinate function z. Finally, we examine D+f⊗g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D + f \otimes g$$\end{document}, where D is a diagonal operator with nonzero diagonal entries and f and g are vectors with nonzero Fourier coefficients. We prove that D+f⊗g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D + f\otimes g$$\end{document} is left-invertible if and only if D+f⊗g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D+f\otimes g$$\end{document} is invertible.
引用
收藏
相关论文
共 50 条
  • [1] Left-Invertibility of Rank-One Perturbations
    Das, Susmita
    Sarkar, Jaydeb
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (08)
  • [2] Special rank-one perturbations
    Linear Algebra Its Appl, (171):
  • [3] Special rank-one perturbations
    Barnett, S
    Hartwig, RE
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 235 : 171 - 190
  • [4] Resonances under rank-one perturbations
    Bourget, Olivier
    Cortes, Victor H.
    Del Rio, Rafael
    Fernandez, Claudio
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (09)
  • [5] RANK-ONE PERTURBATIONS WITH INFINITESIMAL COUPLING
    KISELEV, A
    SIMON, B
    JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (02) : 345 - 356
  • [6] Rank-one perturbations of diagonal operators
    Ionascu, EJ
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 39 (04) : 421 - 440
  • [7] RANK-ONE PERTURBATIONS AT INFINITE COUPLING
    GESZTESY, F
    SIMON, B
    JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 128 (01) : 245 - 252
  • [8] Rank-one perturbations of diagonal operators
    Eugen J. Ionascu
    Integral Equations and Operator Theory, 2001, 39 : 421 - 440
  • [9] Rank-one perturbations of matrix pencils
    Baragana, Itziar
    Roca, Alicia
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 606 (606) : 170 - 191
  • [10] On rank-one perturbations of normal operators
    Foias, C.
    Jung, I. B.
    Ko, E.
    Pearcy, C.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 253 (02) : 628 - 646