Asymptotic bound on binary self-orthogonal codes

被引:0
作者
Yang Ding
机构
[1] Southeast University,Department of Mathematics
来源
Science in China Series A: Mathematics | 2009年 / 52卷
关键词
algebraic geometry codes; concatenated codes; Gilbert-Varshamov bound; Reed-Muller codes; self-dual basis; self-orthogonal codes; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
We present two constructions for binary self-orthogonal codes. It turns out that our constructions yield a constructive bound on binary self-orthogonal codes. In particular, when the information rate R = 1/2, by our constructive lower bound, the relative minimum distance δ ≈ 0.0595 (for GV bound, δ ≈ 0.110). Moreover, we have proved that the binary self-orthogonal codes asymptotically achieve the Gilbert-Varshamov bound.
引用
收藏
页码:631 / 638
页数:7
相关论文
共 9 条
[1]  
Macwilliams F. J.(1972)Good self dual codes exist Discrete Math 3 153-162
[2]  
Sloane N. J.(2001)Asymptotically good quantum codes exceeding the Ashikhmin-Litsyn-Tsfasman bound IEEE Trans Inform Theory 47 2055-2058
[3]  
Thompson J. G.(1993)Uniqueness of some linear subcodes of the extended binary Golay code Probl Inf Transm 29 38-43
[4]  
Chen H.(2006)Transitive and self-dual codes attaining the Tsfasman-Vlădut-Zink bound IEEE Trans Inform Theory 52 2218-2224
[5]  
Ling S.(undefined)undefined undefined undefined undefined-undefined
[6]  
Xing C. P.(undefined)undefined undefined undefined undefined-undefined
[7]  
Dodunekov S. M.(undefined)undefined undefined undefined undefined-undefined
[8]  
Encheva S. B.(undefined)undefined undefined undefined undefined-undefined
[9]  
Stichtenoth H. N.(undefined)undefined undefined undefined undefined-undefined