Novel linear search for support vector machine parameter selection

被引:0
作者
Hong-xia Pang
Wen-de Dong
Zhi-hai Xu
Hua-jun Feng
Qi Li
Yue-ting Chen
机构
[1] Zhejiang University,State Key Laboratory of Optical Instrumentation
来源
Journal of Zhejiang University SCIENCE C | 2011年 / 12卷
关键词
Support vector machine (SVM); Rough line rule; Parameter selection; Linear search; Motion prediction; TP181;
D O I
暂无
中图分类号
学科分类号
摘要
Selecting the optimal parameters for support vector machine (SVM) has long been a hot research topic. Aiming for support vector classification/regression (SVC/SVR) with the radial basis function (RBF) kernel, we summarize the rough line rule of the penalty parameter and kernel width, and propose a novel linear search method to obtain these two optimal parameters. We use a direct-setting method with thresholds to set the epsilon parameter of SVR. The proposed method directly locates the right search field, which greatly saves computing time and achieves a stable, high accuracy. The method is more competitive for both SVC and SVR. It is easy to use and feasible for a new data set without any adjustments, since it requires no parameters to set.
引用
收藏
页码:885 / 896
页数:11
相关论文
共 43 条
[1]  
Ahn J.(2010)A stable hyperparameter selection for the Gaussian RBF kernel for discrimination Statist. Anal. Data Min. 3 142-148
[2]  
Bengio Y.(2000)Gradient-based optimization of hyper-parameters Neur. Comput. 12 1889-1900
[3]  
Bi J.(2003)A geometric approach to support vector regression Neurocomputing 55 79-108
[4]  
Bennett K.P.(2002)Choosing multiple parameters for support vector machines Mach. Learn. 46 131-159
[5]  
Chapelle O.(2004)Practical selection of SVM parameters and noise estimation for SVM regression Neur. Networks 17 113-126
[6]  
Vapnik V.(2006)On kernel target alignment Innov. Mach. Learn. 194 205-256
[7]  
Bousquet O.(2003)Evaluation of simple performance measures for tuning SVM hyperparameters Neurocomputing 51 41-59
[8]  
Mukherjee S.(2010)Evolutionary optimization of least-squares support vector machines Data Min. 8 277-297
[9]  
Cherkassky V.(2008)A distributed PSO-SVM hybrid system with feature selection and parameter optimization Appl. Soft Comput. 8 1381-1391
[10]  
Ma Y.Q.(2006)A GA-based feature selection and parameters optimization for support vector machines Expert Syst. Appl. 31 231-240