Global asymptotic stability of the higher order equation xn+1=axn+bxn-kA+Bxn-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{n+1} = \frac{ ax_{n}+bx_{n-k}}{A+Bx_{n-k}}$$\end{document}

被引:0
作者
M. Saleh
A. Farhat
机构
[1] Birzeit University,Department of Mathematics
[2] University of Virginia,Department of Mathematics
来源
Journal of Applied Mathematics and Computing | 2017年 / 55卷
关键词
Difference equation; Global asymptotic stability; Equilibrium point; Semi-cycles;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the local and global stability and the period two solutions of all nonnegative solutions of the difference equation, xn+1=axn+bxn-kA+Bxn-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} x_{n+1} = \frac{ ax_{n}+bx_{n-k}}{A+Bx_{n-k}} \end{aligned}$$\end{document}where a, b, A, B are all positive real numbers, k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 1$$\end{document} is a positive integer, and the initial conditions x-k,x-k+1,...,x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{-k},x_{-k+1},...,x_{0}$$\end{document} are nonnegative real numbers. It is shown that the zero equilibrium point is globally asymptotically stable under the condition a+b≤A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a+b \le A$$\end{document}, and the unique positive solution is also globally asymptotically stable under the condition a-b≤A≤a+b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a-b \le A \le a+b$$\end{document}. By the end, we study the global stability of such an equation through numerically solved examples.
引用
收藏
页码:135 / 148
页数:13
相关论文
共 29 条
[1]  
Abu-Saris R(2003)Global stability of Appl. Math. Lett. 16 173-178
[2]  
DeVault R(1999)On the recursive sequence J. Math. Anal. Appl. 533 790-798
[3]  
Amleh A(2004)The Asymptotic Stability of J. Differ. Equ. Appl. 10 589-599
[4]  
Grove E(1998)On the recursive sequence Proc. Am. Math. Soc. 126 3257-3261
[5]  
Ladas G(2006)Global asymptotic stability for a higher order nonlinear rational differnce equations Appl. Math. Comput. 182 1819-1831
[6]  
Georgiou G(2001)On the Recursive Sequence Global behavior of Nonlinear Anal. 47 4743-4751
[7]  
Dannan F(2006)On the higher order rational difference equation Appl. Math. Comput. 173 710-723
[8]  
DeVault R(2004)On asymptotic behaviour of the difference equation Appl. Math. Comput. 147 163-167
[9]  
Schultz SW(2000)On the Recursive Sequence J. Math. Anal. Appl. 251 571-586
[10]  
Ladas G(1994)The asymptotic stability of J. Math. Anal. Appl. 188 719-731