Exploring intrinsically disordered proteins in Chlamydomonas reinhardtii

被引:0
|
作者
Yizhi Zhang
Hélène Launay
Antoine Schramm
Régine Lebrun
Brigitte Gontero
机构
[1] Aix Marseille Univ,Plate
[2] CNRS,forme Protéomique
[3] BIP,undefined
[4] UMR 7281,undefined
[5] IMM,undefined
[6] 31 Chemin J. Aiguier,undefined
[7] Aix Marseille Univ,undefined
[8] CNRS,undefined
[9] AFMB,undefined
[10] Marseille Protéomique (MaP),undefined
[11] IBiSA labeled,undefined
[12] IMM,undefined
[13] FR 3479,undefined
[14] CNRS,undefined
[15] B.P. 71,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The content of intrinsically disordered protein (IDP) is related to organism complexity, evolution, and regulation. In the Plantae, despite their high complexity, experimental investigation of IDP content is lacking. We identified by mass spectrometry 682 heat-resistant proteins from the green alga, Chlamydomonas reinhardtii. Using a phosphoproteome database, we found that 331 of these proteins are targets of phosphorylation. We analyzed the flexibility propensity of the heat-resistant proteins and their specific features as well as those of predicted IDPs from the same organism. Their mean percentage of disorder was about 20%. Most of the IDPs (~70%) were addressed to other compartments than mitochondrion and chloroplast. Their amino acid composition was biased compared to other classic IDPs. Their molecular functions were diverse; the predominant ones were nucleic acid binding and unfolded protein binding and the less abundant one was catalytic activity. The most represented proteins were ribosomal proteins, proteins associated to flagella, chaperones and histones. We also found CP12, the only experimental IDP from C. reinhardtii that is referenced in disordered protein database. This is the first experimental investigation of IDPs in C. reinhardtii that also combines in silico analysis.
引用
收藏
相关论文
共 50 条
  • [41] Computer Simulations of Intrinsically Disordered Proteins
    Chong, Song-Ho
    Chatterjee, Prathit
    Ham, Sihyun
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 68, 2017, 68 : 117 - 134
  • [42] The dynamic function of intrinsically disordered proteins
    Milles S.
    BIOspektrum, 2023, 29 (4) : 351 - 353
  • [43] AlphaFold and Implications for Intrinsically Disordered Proteins
    Ruff, Kiersten M.
    Pappu, Rohit, V
    JOURNAL OF MOLECULAR BIOLOGY, 2021, 433 (20)
  • [44] The roles of intrinsically disordered proteins in neurodegeneration
    Utami, Kagistia Hana
    Morimoto, Satoru
    Mitsukura, Yasue
    Okano, Hideyuki
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2025, 1869 (04):
  • [45] Intrinsically Disordered Proteins in Chronic Diseases
    Kulkarni, Prakash
    Uversky, Vladimir N.
    BIOMOLECULES, 2019, 9 (04):
  • [46] Allosteric Modulation of Intrinsically Disordered Proteins
    Rehman, Ashfaq Ur
    Rahman, Mueed Ur
    Arshad, Taaha
    Chen, Hai-Feng
    PROTEIN ALLOSTERY IN DRUG DISCOVERY, 2019, 1163 : 335 - 357
  • [47] MobiDB: intrinsically disordered proteins in 2021
    Piovesan, Damiano
    Necci, Marco
    Escobedo, Nahuel
    Monzon, Alexander Miguel
    Hatos, Andras
    Micetic, Ivan
    Quaglia, Federica
    Paladin, Lisanna
    Ramasamy, Pathmanaban
    Dosztanyi, Zsuzsanna
    Vranken, Wim F.
    Davey, Norman E.
    Parisi, Gustavo
    Fuxreiter, Monika
    Tosatto, Silvio C. E.
    NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) : D361 - D367
  • [48] Intrinsically disordered regions in autophagy proteins
    Mei, Yang
    Su, Minfei
    Soni, Gaurav
    Salem, Saeed
    Colbert, Christopher L.
    Sinha, Sangita C.
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2014, 82 (04) : 565 - 578
  • [49] Intrinsically disordered proteins: Chronology of a discovery
    Uversky, Vladimir N.
    Kulkarni, Prakash
    BIOPHYSICAL CHEMISTRY, 2021, 279
  • [50] Intrinsically disordered proteins (IDPs) in trypanosomatids
    Ruy, Patrcia de Cassia
    Torrieri, Raul
    Toledo, Juliano Simoes
    Alves, Viviane de Souza
    Cruz, Angela Kaysel
    Ruiz, Jeronimo Conceicao
    BMC GENOMICS, 2014, 15