On the supersolubility of a finite group with NS-supplemented subgroups

被引:0
作者
V. S. Monakhov
A. A. Trofimuk
机构
[1] Francisk Skorina Gomel State University,Department of Mathematics and Programming Technologies
来源
Acta Mathematica Hungarica | 2020年 / 160卷
关键词
finite group; soluble group; supersoluble group; Sylow subgroup; maximal subgroup; NS-supplemented subgroup; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
A subgroup A of a finite group G is said to be NS-supplemented in G, if there exists a subgroup B of G such that G=AB and whenever X is a normal subgroup of A and p∈π(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in \pi(B)$$\end{document}, there exists a Sylow p-subgroup Bp of B such that XBp=BpX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$XB_p=B_pX$$\end{document}. In this paper, we prove the supersolubility of a group G in the following cases: every non-cyclic Sylow subgroup of G is NS-supplemented in G; G is soluble and all maximal subgroups of every non-cylic Sylow subgroup of G are NS-supplemented in G. The solubility of a group with NS-supplemented maximal subgroups is obtained.
引用
收藏
页码:161 / 167
页数:6
相关论文
共 32 条
[1]  
Arroyo-Jordá M(2010)On finite products of groups and supersolubility J. Algebra 323 2922-2934
[2]  
Arroyo-Jordá P(2001)On J. Pure App. Algebra 165 129-135
[3]  
Martínez-Pastor A(1991)-quasinormal embedded subgroups of finite groups Arch. Math. 56 521-527
[4]  
Pérez-Ramos MD(1998)Influence of J. Pure App. Algebra 127 113-118
[5]  
Asaad M(2008)-quasinormality on maximal subgroups of Sylow subgroups of fitting subgroup of a finite group Acta Math. Sinica 24 1751-1758
[6]  
Heliel AA(2006)Sufficient conditions for supersolvability of finite groups Publ. Math. Debrecen 68 433-449
[7]  
Asaad M(1983)Finite groups with seminormal Sylow subgroups J. Algebra 81 304-311
[8]  
Ramadan M(2008)Criterions of supersolubility for products of supersoluble groups J. Algebra 319 4275-4287
[9]  
Shaalan A(2006)Subgroups of prime power index in a simple group Math. Notes 80 542-549
[10]  
Ballester-Bolinches A(2015)The influence of SS-quasinormality of some subgroups on the structure of finite groups Trudy Inst. Mat. Mekh. UrO RAN 21 256-267