On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph

被引:0
作者
S. Pirzada
Saleem Khan
机构
[1] University of Kashmir,Department of Mathematics
来源
Computational and Applied Mathematics | 2023年 / 42卷
关键词
First Zagreb index; Signless Laplacian matrix; Signless Laplacian eigenvalues; Signless Laplacian energy; 05C50; 05C12; 15A18;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple graph with order n and size m. The quantity M1(G)=∑i=1ndvi2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_1(G)=\sum _{i=1}^{n}d^2_{v_i}$$\end{document} is called the first Zagreb index of G, where dvi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{v_i}$$\end{document} is the degree of vertex vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_i$$\end{document}, for all i=1,2,⋯,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,2,\dots ,n$$\end{document}. The signless Laplacian matrix of a graph G is Q(G)=D(G)+A(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q(G)=D(G)+A(G)$$\end{document}, where A(G) and D(G) denote, respectively, the adjacency and the diagonal matrix of the vertex degrees of G. Let q1≥q2≥⋯≥qn≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_1\ge q_2\ge \dots \ge q_n\ge 0$$\end{document} be the signless Laplacian eigenvalues of G. The largest signless Laplacian eigenvalue q1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_1$$\end{document} is called the signless Laplacian spectral radius or Q-index of G and is denoted by q(G). Let Sk+(G)=∑i=1kqi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^+_k(G)=\sum _{i=1}^{k}q_i$$\end{document} and Lk(G)=∑i=0k-1qn-i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_k(G)=\sum _{i=0}^{k-1}q_{n-i}$$\end{document}, where 1≤k≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le k\le n$$\end{document}, respectively denote the sum of k largest and smallest signless Laplacian eigenvalues of G. The signless Laplacian energy of G is defined as QE(G)=∑i=1n|qi-d¯|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$QE(G)=\sum _{i=1}^{n}|q_i-\overline{d}|$$\end{document}, where d¯=2mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{d}=\frac{2m}{n}$$\end{document} is the average vertex degree of G. In this article, we obtain upper bounds for the first Zagreb index M1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_1(G)$$\end{document} and show that each bound is best possible. Using these bounds, we obtain several upper bounds for the graph invariant Sk+(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^+_k(G)$$\end{document} and characterize the extremal cases. As a consequence, we find upper bounds for the Q-index and lower bounds for the graph invariant Lk(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_k(G)$$\end{document} in terms of various graph parameters and determine the extremal cases. As an application, we obtain upper bounds for the signless Laplacian energy of a graph and characterize the extremal cases.
引用
收藏
相关论文
共 45 条
[1]  
Abreu N(2011)Bounds for the signless Laplacian energy Linear Algebra Appl 435 2365-2374
[2]  
Cardoso DM(2013)On the sum of the signless Laplacian eigenvalues of a graph Linear Algebra Appl 438 4539-4546
[3]  
Gutman I(1998)An upper bound on the sum of squares of degrees in a graph Discret Math 185 245-248
[4]  
Martins EA(2018)Improved results on Brouwer’s conjecture for sum of the Laplacian eigenvalues of a graph Linear Algebra Appl 557 327-338
[5]  
Robbiano M(2008)New theorems for signless Laplacian eigenvalues Bull Acad Serbe Sci Arts Cl Sci Math Nat Sci Math 137 131-146
[6]  
Ashraf F(2016)Relation between signless Laplacian energy, energy of a graph and its line graph Linear Algebra Appl 493 91-107
[7]  
Omidi GR(2009)On three conjectures involving the signless Laplacian spectral radius of graphs Publ. Inst. Math. (Beograd) 85 35-38
[8]  
Tayfeh-Rezaie B(2017)On the bounds for the signless Laplacian energy of a graph Discret Appl Math 228 3-13
[9]  
Caen DD(2016)On the sum of the Laplacian eigenvalues of a graph and Brouwer’s Conjecture Linear Algebra Appl 501 376-389
[10]  
Chen X(2018)Signless Laplacian energy of a graph and energy of a line graph Linear Algebra Appl 544 306-324