Dynamically defined sequences with small discrepancy

被引:0
作者
Stefan Steinerberger
机构
[1] Yale University,Department of Mathematics
来源
Monatshefte für Mathematik | 2020年 / 191卷
关键词
Low discrepancy sequence; Energy functional; Uniform distribution; Discrepancy; Potential theory; 11L03; 42B05; 82C22;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of constructing sequences (xn)n=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_n)_{n=1}^{\infty }$$\end{document} on [0, 1] in such a way that DN∗=sup0≤x≤1#1≤i≤N:xi≤xN-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} D_N^* = \sup _{0 \le x \le 1} \left| \frac{ \#\left\{ 1 \le i \le N: x_i \le x \right\} }{N} - x \right| \end{aligned}$$\end{document}is small. A result of Schmidt shows that for all sequences sequences (xn)n=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_n)_{n=1}^{\infty }$$\end{document} on [0, 1] we have DN∗≳(logN)N-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_N^* \gtrsim (\log {N}) N^{-1}$$\end{document} for infinitely many N, several classical constructions attain this growth. We describe a type of uniformly distributed sequence that seems to be completely novel: given x1,⋯,xN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ x_1, \dots , x_{N-1} \right\} $$\end{document}, we construct xN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_N$$\end{document} in a greedy manner xN=argminmink|x-xk|≥N-10∑k=1N-11-log(2sin(π|x-xk|)).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} x_N = \arg \min _{\min _k |x-x_k| \ge N^{-10}} \sum _{k=1}^{N-1}{1-\log {(2\sin {(\pi |x-x_k|)})}}. \end{aligned}$$\end{document}We prove that DN∗≲(logN)N-1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_N^* \lesssim (\log {N}) N^{-1/2}$$\end{document} and conjecture that DN∗≲(logN)N-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_N^* \lesssim (\log {N}) N^{-1}$$\end{document}. Numerical examples illustrate this conjecture in a very impressive manner. We also establish a discrepancy bound DN∗≲(logN)dN-1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_N^* \lesssim (\log {N})^d N^{-1/2}$$\end{document} for an analogous construction in higher dimensions and conjecture it to be DN∗≲(logN)dN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_N^* \lesssim (\log {N})^d N^{-1}$$\end{document}.
引用
收藏
页码:639 / 655
页数:16
相关论文
共 50 条
[41]   Discrepancy of certain kronecker sequences concerning transcendental numbers [J].
Yao Chen Zhu .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (10) :1897-1902
[42]   Metric discrepancy results for sequences {nkx} and diophantine equations [J].
Berkes, Istvan ;
Philipp, Walter ;
Tichy, Robert F. .
DIOPHANTINE APPROXIMATION: FESTSCHRIFT FOR WOLFGANG SCHMIDT, 2008, 16 :95-+
[43]   Comparison of randomization techniques for low-discrepancy sequences in finance [J].
Tamura, Tsutomu .
ASIA-PACIFIC FINANCIAL MARKETS, 2005, 12 (03) :227-244
[44]   Low Discrepancy Sequences Based Optimization Algorithm for Tuning PSSs [J].
Alabduljabbar, A. A. ;
Milanovic, J. V. ;
Al-Eid, E. M. .
2008 10TH INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS, 2008, :474-+
[45]   An Explicit Formula for the L2-Discrepancy of (nα)-Sequences [J].
L. Roçadas ;
J. Schoißengeier .
Computing, 2006, 77 :113-128
[46]   Metrical lower bounds on the discrepancy of digital Kronecker-sequences [J].
Larcher, Gerhard ;
Pillichshammer, Friedrich .
JOURNAL OF NUMBER THEORY, 2014, 135 :262-283
[47]   An Explicit Formula for the L2-discrepancy of (nα)-sequences [J].
Roçadas, L ;
Schoissengeier, J .
COMPUTING, 2006, 77 (01) :113-128
[48]   On existence and discrepancy of certain digital Niederreiter-Halton sequences [J].
Hofer, Roswitha ;
Larcher, Gerhard .
ACTA ARITHMETICA, 2010, 141 (04) :369-394
[49]   A metric discrepancy result for the Hardy–Littlewood–Pólya sequences [J].
Katusi Fukuyama ;
Keisuke Nakata .
Monatshefte für Mathematik, 2010, 160 :41-49
[50]   On the one-sided boundedness of the local discrepancy of {n?}-sequences [J].
Ying, Jiangang ;
Zheng, Yushu .
ACTA ARITHMETICA, 2022, :97-114