Dynamically defined sequences with small discrepancy

被引:0
作者
Stefan Steinerberger
机构
[1] Yale University,Department of Mathematics
来源
Monatshefte für Mathematik | 2020年 / 191卷
关键词
Low discrepancy sequence; Energy functional; Uniform distribution; Discrepancy; Potential theory; 11L03; 42B05; 82C22;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of constructing sequences (xn)n=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_n)_{n=1}^{\infty }$$\end{document} on [0, 1] in such a way that DN∗=sup0≤x≤1#1≤i≤N:xi≤xN-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} D_N^* = \sup _{0 \le x \le 1} \left| \frac{ \#\left\{ 1 \le i \le N: x_i \le x \right\} }{N} - x \right| \end{aligned}$$\end{document}is small. A result of Schmidt shows that for all sequences sequences (xn)n=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_n)_{n=1}^{\infty }$$\end{document} on [0, 1] we have DN∗≳(logN)N-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_N^* \gtrsim (\log {N}) N^{-1}$$\end{document} for infinitely many N, several classical constructions attain this growth. We describe a type of uniformly distributed sequence that seems to be completely novel: given x1,⋯,xN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ x_1, \dots , x_{N-1} \right\} $$\end{document}, we construct xN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_N$$\end{document} in a greedy manner xN=argminmink|x-xk|≥N-10∑k=1N-11-log(2sin(π|x-xk|)).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} x_N = \arg \min _{\min _k |x-x_k| \ge N^{-10}} \sum _{k=1}^{N-1}{1-\log {(2\sin {(\pi |x-x_k|)})}}. \end{aligned}$$\end{document}We prove that DN∗≲(logN)N-1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_N^* \lesssim (\log {N}) N^{-1/2}$$\end{document} and conjecture that DN∗≲(logN)N-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_N^* \lesssim (\log {N}) N^{-1}$$\end{document}. Numerical examples illustrate this conjecture in a very impressive manner. We also establish a discrepancy bound DN∗≲(logN)dN-1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_N^* \lesssim (\log {N})^d N^{-1/2}$$\end{document} for an analogous construction in higher dimensions and conjecture it to be DN∗≲(logN)dN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_N^* \lesssim (\log {N})^d N^{-1}$$\end{document}.
引用
收藏
页码:639 / 655
页数:16
相关论文
共 50 条
[31]   Metric discrepancy results for geometric progressions with small ratios [J].
Fukuyama, K. ;
Sakaguchi, S. ;
Shimabe, O. ;
Toyoda, T. ;
Tscheckl, M. .
ACTA MATHEMATICA HUNGARICA, 2018, 155 (02) :416-430
[32]   Metrical results on the discrepancy of Halton–Kronecker sequences [J].
Roswitha Hofer ;
Gerhard Larcher .
Mathematische Zeitschrift, 2012, 271 :1-11
[33]   Investigating the discrepancy property of de Bruijn sequences [J].
Gabric, Daniel ;
Sawada, Joe .
DISCRETE MATHEMATICS, 2022, 345 (04)
[34]   Constructing a new class of low-discrepancy sequences by using the β-adic transformation [J].
Ninomiya, S .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (2-5) :403-418
[35]   The pair correlation function of multi-dimensional low-discrepancy sequences with small stochastic error terms [J].
Schmiedt, Anja ;
Weiss, Christian .
JOURNAL OF NUMBER THEORY, 2024, 259 :422-437
[36]   ON THE LAW OF THE ITERATED LOGARITHM FOR THE DISCREPANCY OF LACUNARY SEQUENCES II [J].
Aistleitner, Christoph .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (07) :3713-3728
[37]   Genetic algorithms using low-discrepancy sequences [J].
Kimura, Shuhei ;
Matsumura, Koki .
GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2, 2005, :1341-1346
[38]   Discrepancy of Certain Kronecker Sequences Concerning Transcendental Numbers [J].
Yao Chen Zhu .
Acta Mathematica Sinica, English Series, 2007, 23 :1897-1902
[39]   Discrepancy of Certain Kronecker Sequences Concerning Transcendental Numbers [J].
Yao Chen ZHU Institute of Applied MathematicsAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing PRChina .
Acta Mathematica Sinica(English Series), 2007, 23 (10) :1897-1902
[40]   Metrical results on the discrepancy of Halton-Kronecker sequences [J].
Hofer, Roswitha ;
Larcher, Gerhard .
MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (1-2) :1-11