Dynamically defined sequences with small discrepancy

被引:0
作者
Stefan Steinerberger
机构
[1] Yale University,Department of Mathematics
来源
Monatshefte für Mathematik | 2020年 / 191卷
关键词
Low discrepancy sequence; Energy functional; Uniform distribution; Discrepancy; Potential theory; 11L03; 42B05; 82C22;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of constructing sequences (xn)n=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_n)_{n=1}^{\infty }$$\end{document} on [0, 1] in such a way that DN∗=sup0≤x≤1#1≤i≤N:xi≤xN-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} D_N^* = \sup _{0 \le x \le 1} \left| \frac{ \#\left\{ 1 \le i \le N: x_i \le x \right\} }{N} - x \right| \end{aligned}$$\end{document}is small. A result of Schmidt shows that for all sequences sequences (xn)n=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_n)_{n=1}^{\infty }$$\end{document} on [0, 1] we have DN∗≳(logN)N-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_N^* \gtrsim (\log {N}) N^{-1}$$\end{document} for infinitely many N, several classical constructions attain this growth. We describe a type of uniformly distributed sequence that seems to be completely novel: given x1,⋯,xN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ x_1, \dots , x_{N-1} \right\} $$\end{document}, we construct xN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_N$$\end{document} in a greedy manner xN=argminmink|x-xk|≥N-10∑k=1N-11-log(2sin(π|x-xk|)).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} x_N = \arg \min _{\min _k |x-x_k| \ge N^{-10}} \sum _{k=1}^{N-1}{1-\log {(2\sin {(\pi |x-x_k|)})}}. \end{aligned}$$\end{document}We prove that DN∗≲(logN)N-1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_N^* \lesssim (\log {N}) N^{-1/2}$$\end{document} and conjecture that DN∗≲(logN)N-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_N^* \lesssim (\log {N}) N^{-1}$$\end{document}. Numerical examples illustrate this conjecture in a very impressive manner. We also establish a discrepancy bound DN∗≲(logN)dN-1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_N^* \lesssim (\log {N})^d N^{-1/2}$$\end{document} for an analogous construction in higher dimensions and conjecture it to be DN∗≲(logN)dN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_N^* \lesssim (\log {N})^d N^{-1}$$\end{document}.
引用
收藏
页码:639 / 655
页数:16
相关论文
共 50 条
[21]   On the discrepancy and linear complexity of some counter-dependent recurrence sequences [J].
Shparlinski, Igor E. ;
Winterhof, Arne .
SEQUENCES AND THEIR APPLICATIONS - SETA 2006, 2006, 4086 :295-303
[22]   Recent constructions of low-discrepancy sequences [J].
Niederreiter, Harald .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2017, 135 :18-27
[23]   Metric discrepancy results for geometric progressions with small ratios [J].
K. Fukuyama ;
S. Sakaguchi ;
O. Shimabe ;
T. Toyoda ;
M. Tscheckl .
Acta Mathematica Hungarica, 2018, 155 :416-430
[24]   Lp-discrepancy and statistical independence of sequences [J].
Peter J. Grabner ;
Oto Strauch ;
Robert F. Tichy .
Czechoslovak Mathematical Journal, 1999, 49 :97-110
[25]   Lp-discrepancy and statistical independence of sequences [J].
Grabner, PJ ;
Strauch, O ;
Tichy, RF .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 1999, 49 (01) :97-110
[26]   ON THE LAW OF THE ITERATED LOGARITHM FOR THE DISCREPANCY OF LACUNARY SEQUENCES [J].
Aistleitner, Christoph .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (11) :5967-5982
[27]   Computational investigations of low-discrepancy sequences [J].
Kocis, L ;
Whiten, WJ .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1997, 23 (02) :266-294
[28]   Probabilistic error bounds for the discrepancy of mixed sequences [J].
Aistleitner, Christoph ;
Hofer, Markus .
MONTE CARLO METHODS AND APPLICATIONS, 2012, 18 (02) :181-200
[29]   On the inverse of the discrepancy for infinite dimensional infinite sequences [J].
Aistleitner, Christoph .
JOURNAL OF COMPLEXITY, 2013, 29 (02) :182-194
[30]   New star discrepancy bounds for -nets and -sequences [J].
Faure, Henri ;
Kritzer, Peter .
MONATSHEFTE FUR MATHEMATIK, 2013, 172 (01) :55-75