On the stability of solitary waves of a generalized Ostrovsky equation

被引:0
作者
Steven Levandosky
机构
[1] College of the Holy Cross,Mathematics and Computer Science Department
来源
Analysis and Mathematical Physics | 2012年 / 2卷
关键词
Solitary Wave; Trial Function; Solitary Wave Solution; Quadratic Nonlinearity; Ground State Solution;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the stability of ground state solitary waves of the generalized Ostrovsky equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( u_t - \beta u_{xxx} + f(u)_x)_x = \gamma u$$\end{document}, with homogeneous nonlinearities of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(u)=a_e|u|^p+a_o|u|^{p-1}u$$\end{document}. We obtain bounds on the function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} whose convexity determines the stability of the solitary waves. These bounds imply that, when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le p<5$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_o<0$$\end{document}, solitary waves are stable for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document} near \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_*=2\sqrt{\beta \gamma }$$\end{document}. These bounds also imply that, for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma >0$$\end{document} small, solitary waves are stable when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le p<5$$\end{document} and unstable when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>5$$\end{document}. We also numerically compute the function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}, and thereby determine precise regions of stability and instability, for several nonlinearities.
引用
收藏
页码:407 / 437
页数:30
相关论文
共 28 条
  • [1] Bona J(1987)Stability and instability of solitary waves of Korteweg-de Vries type Proc. R. Soc. Lond. Ser. A 411 395-412
  • [2] Souganidis P(1982)Orbital stability of standing waves for some nonlinear Schrodinger equations Commun. Math. Phys. 85 549-561
  • [3] Strauss W(2009)Solitary waves of the regularized short pulse and Ostrovsky equations SIAM J. Math. Anal. 41 2088-2106
  • [4] Cazenave T(1992)Instability of symmetric stationary states for some nonlinear Schrödinger equations with an external magnetic field Ann. Inst. H. Poincaré, Phys. Théore. 54 109-145
  • [5] Lions PL(2007)Stability of solitary waves of a fifth-order water wave model Physica D 227 162-172
  • [6] Costanzino N(2007)Stability and weak rotation limit of solitary waves of the Ostrovsky equation Discrete Contin. Dyn. Syst. B 7 793-806
  • [7] Manukian V(2006)Stability of solitary waves of a generalized Ostrovsky equation SIAM J. Math. Anal. 38 985-1011
  • [8] Jones CKRT(2007)On the stability of solitarywaves for the Ostrovsky equation Q. Appl. Math. 65 571-589
  • [9] Goncalves Ribeiro J.(2004)Stability of solitary waves and weak rotation limit for the Ostrovsky equation J. Differ. Equ. 203 159-183
  • [10] Levandosky S(1978)Okeanologia Nonlinear internal waves in a rotating ocean 18 181-191