Newton’s Method for Global Free Flight Trajectory Optimization

被引:0
|
作者
Borndörfer R. [1 ]
Danecker F. [1 ,2 ]
Weiser M. [2 ]
机构
[1] Network Optimization, Zuse Institute Berlin, Takustr. 7, Berlin
[2] Modeling and Simulation of Complex Processes, Zuse Institute Berlin, Takustr. 7, Berlin
关键词
Discrete optimization; Flight planning; Free flight; Global optimization; Newton’s method; Optimal control; Shortest path;
D O I
10.1007/s43069-023-00238-z
中图分类号
学科分类号
摘要
Globally optimal free flight trajectory optimization can be achieved with a combination of discrete and continuous optimization. A key requirement is that Newton’s method for continuous optimization converges in a sufficiently large neighborhood around a minimizer. We show in this paper that, under certain assumptions, this is the case. © 2023, The Author(s).
引用
收藏
相关论文
共 50 条
  • [21] Yet another fast variant of Newton's method for nonconvex optimization
    Gratton, Serge
    Jerad, Sadok
    Toint, Philippe L.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2025, 45 (02) : 971 - 1008
  • [22] NEWTON'S METHOD FOR INTERVAL-VALUED MULTIOBJECTIVE OPTIMIZATION PROBLEM
    Upadhyay, Balendu bhooshan
    Pandey, Rupesh krishna
    Liao, Shanli
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2024, 20 (04) : 1633 - 1661
  • [23] Generalized Newton Raphson's method free from second derivative
    Nazeer, Waqas
    Naseem, Amir
    Kang, Shin Min
    Kwun, Young Chel
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 2823 - 2831
  • [24] A survey of numerical algorithms for trajectory optimization of flight vehicles
    Huang GuoQiang
    Lu YuPing
    Nan Ying
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2012, 55 (09) : 2538 - 2560
  • [25] A survey of numerical algorithms for trajectory optimization of flight vehicles
    HUANG GuoQiang *
    Science China(Technological Sciences), 2012, (09) : 2538 - 2560
  • [26] A survey of numerical algorithms for trajectory optimization of flight vehicles
    GuoQiang Huang
    YuPing Lu
    Ying Nan
    Science China Technological Sciences, 2012, 55 : 2538 - 2560
  • [27] Newton-Stein Method: An Optimization Method for GLMs via Stein's Lemma
    Erdogdu, Murat A.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [28] Kantorovich's theorems for Newton's method for mappings and optimization problems on Lie groups
    Wang, Jin-Hua
    Li, Chong
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (01) : 322 - 347
  • [29] Global convergence of Newton's method for the regularized p-Stokes equations
    Schmidt, Niko
    NUMERICAL ALGORITHMS, 2024,
  • [30] QUADRATIC CONVERGENCE OF SMOOTHING NEWTON'S METHOD FOR 0/1 LOSS OPTIMIZATION
    Zhou, Shenglong
    Pan, Lili
    Xiu, Naihua
    Hou-Duo Qi
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (04) : 3184 - 3211