Comparing data driven models versus numerical models in simulation of waterfront advance in furrow irrigation

被引:0
|
作者
Soudabeh Golestani Kermani
Sareh Sayari
Ozgur Kisi
Mohammad Zounemat-Kermani
机构
[1] Shahid Bahonar University of Kerman,Water Engineering Department
[2] Ilia State University,Faculty of Natural Sciences and Engineering
来源
Irrigation Science | 2019年 / 37卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Accurate design, appropriate management, and knowledge of relationships between the parameters affecting on the performance of a surface irrigation system are the factors which play an effective role in increasing the efficiency of these systems. If parameters such as advance distance can be well estimated per specified flow rate, the volume of infiltrated water can be estimated, thereby preventing water loss and enhancing irrigation efficiency to a great extent. In the present study evaluated the accuracy of data-driven methods Random Forest (RF), Artificial Neural Networks (ANN), Adaptive Neuro Fuzzy Inference System (ANFIS), and M5 Model Tree and common numerical methods such as the Full hydrodynamic and Zero-inertia model (using SIRMOD software) and Zero-inertial model (using WinSRFR software) to predict the advance distance in furrow irrigation. To this end, seven series of data resulting from the evaluation of furrow irrigation system in various regions were collected. Each series included 12 input parameters of furrow length (L), furrow geometrical cross-section coefficients (σ1,σ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma_{1} ,\sigma_{2}$$\end{document}), furrow hydraulic cross-section coefficients (ρ1,ρ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho_{1} ,\rho_{2}$$\end{document}), inflow rate (Q), Maning’s coefficient (n), field slope (S0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{0}$$\end{document}), cut-off time (Tcutoff)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(T_{\text{cutoff}} )$$\end{document}, final infiltration rate (f0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{0}$$\end{document}), and the infiltration parameters of the Kostiakov equation (a and k). Comparison of the results showed that all the data-driven methods managed to estimate the advance distance of the wetting front in the furrow with higher accuracy than the numerical methods. From among these, the ANFIS model had the highest accuracy (RMSE = 1.842 m, MAE = 1.305 m) in estimating the advance distance in the furrow.
引用
收藏
页码:547 / 560
页数:13
相关论文
共 50 条
  • [1] Comparing data driven models versus numerical models in simulation of waterfront advance in furrow irrigation
    Kermani, Soudabeh Golestani
    Sayari, Sareh
    Kisi, Ozgur
    Zounemat-Kermani, Mohammad
    IRRIGATION SCIENCE, 2019, 37 (05) : 547 - 560
  • [2] NUMERICAL-CALCULATION OF INFILTRATION IN FURROW IRRIGATION SIMULATION-MODELS
    BAUTISTA, E
    WALLENDER, WW
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 1993, 119 (02) : 286 - 294
  • [3] Comparison of Muskingum-Cunge model and irrigation hydraulic models in estimation of furrow irrigation advance phase
    Bahrami, Mehdi
    Nasab, Saeed Boroomand
    Naseri, Abd Ali
    Albaji, Mohammad
    RESEARCH ON CROPS, 2010, 11 (02) : 541 - 544
  • [4] Field evaluation of furrow irrigation models
    Esfandiari, M
    Maheshwari, BL
    JOURNAL OF AGRICULTURAL ENGINEERING RESEARCH, 2001, 79 (04): : 459 - 479
  • [5] COMPARISON AND SELECTION OF FURROW IRRIGATION MODELS
    HOLZAPFEL, EA
    MARINO, MA
    CHAVEZMORALES, J
    AGRICULTURAL WATER MANAGEMENT, 1984, 9 (02) : 105 - 125
  • [6] INFILTRATION PARAMETERS FROM FURROW IRRIGATION ADVANCE DATA
    ELLIOTT, RL
    WALKER, WR
    SKOGERBOE, GV
    TRANSACTIONS OF THE ASAE, 1983, 26 (06): : 1726 - 1731
  • [7] FURROW ADVANCE USING SIMPLE ROUTING MODELS
    WILSON, BN
    ELLIOTT, RL
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 1988, 114 (01) : 104 - 117
  • [8] Measurement and simulation of irrigation performance in continuous and surge furrow irrigation using WinSRFR and SIRMOD models
    Mojgan Radmanesh
    Seyed Hamid Ahmadi
    Ali Reza Sepaskhah
    Scientific Reports, 13
  • [9] Measurement and simulation of irrigation performance in continuous and surge furrow irrigation using WinSRFR and SIRMOD models
    Radmanesh, Mojgan
    Ahmadi, Seyed Hamid
    Sepaskhah, Ali Reza
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [10] FURROW IRRIGATION MANAGEMENT AND DESIGN CRITERIA USING EFFICIENCY PARAMETERS AND SIMULATION MODELS
    Holzapfel, Eduardo A.
    Leiva, Carlos
    Marino, Miguel A.
    Paredes, Jeronimo
    Arumi, Jose L.
    Billib, Max
    CHILEAN JOURNAL OF AGRICULTURAL RESEARCH, 2010, 70 (02): : 287 - 296