Exact Localisations of Feedback Sets

被引:0
|
作者
Michael Hecht
机构
[1] Max Planck Institute of Molecular Cell Biology and Genetics,MOSAIC Group, Chair of Scientific Computing for Systems Biology, Faculty of Computer Science, TU Dresden and Center for Systems Biology Dresden
[2] University of Leipzig,Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics
来源
Theory of Computing Systems | 2018年 / 62卷
关键词
Feedback set problem; Acyclic subgraph problem; Linear ordering problem; Elementary cycle; Simple cycle;
D O I
暂无
中图分类号
学科分类号
摘要
The feedback arc (vertex) set problem, shortened FASP (FVSP), is to transform a given multi digraph G = (V, E) into an acyclic graph by deleting as few arcs (vertices) as possible. Due to the results of Richard M. Karp in 1972 it is one of the classic NP-complete problems. An important contribution of this paper is that the subgraphs Gel(e), Gsi(e) of all elementary cycles or simple cycles running through some arc e ∈ E, can be computed in 𝓞|E|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}\big (|E|^{2}\big )$\end{document} and 𝓞(|E|4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(|E|^{4})$\end{document}, respectively. We use this fact and introduce the notion of the essential minor and isolated cycles, which yield a priori problem size reductions and in the special case of so called resolvable graphs an exact solution in 𝓞(|V||E|3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(|V||E|^{3})$\end{document}. We show that weighted versions of the FASP and FVSP possess a Bellman decomposition, which yields exact solutions using a dynamic programming technique in times 𝓞2m|E|4log(|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}\big (2^{m}|E|^{4}\log (|V|)\big )$\end{document} and 𝓞2nΔ(G)4|V|4log(|E|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}\big (2^{n}\Delta (G)^{4}|V|^{4}\log (|E|)\big )$\end{document}, where m ≤|E|−|V | + 1, n ≤ (Δ(G) − 1)|V |−|E| + 1, respectively. The parameters m, n can be computed in 𝓞(|E|3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(|E|^{3})$\end{document}, 𝓞(Δ(G)3|V|3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(\Delta (G)^{3}|V|^{3})$\end{document}, respectively and denote the maximal dimension of the cycle space of all appearing meta graphs, decoding the intersection behavior of the cycles. Consequently, m, n equal zero if all meta graphs are trees. Moreover, we deliver several heuristics and discuss how to control their variation from the optimum. Summarizing, the presented results allow us to suggest a strategy for an implementation of a fast and accurate FASP/FVSP-SOLVER.
引用
收藏
页码:1048 / 1084
页数:36
相关论文
共 13 条
  • [1] Exact Localisations of Feedback Sets
    Hecht, Michael
    THEORY OF COMPUTING SYSTEMS, 2018, 62 (05) : 1048 - 1084
  • [2] An Exact Method for the Minimum Feedback Arc Set Problem
    Baharev A.
    Schichl H.
    Neumaier A.
    Achterberg T.
    ACM Journal of Experimental Algorithmics, 2021, 26
  • [3] A linear ordering problem of sets
    Aparicio, Juan
    Landete, Mercedes
    Monger, Juan F.
    ANNALS OF OPERATIONS RESEARCH, 2020, 288 (01) : 45 - 64
  • [4] A linear ordering problem of sets
    Juan Aparicio
    Mercedes Landete
    Juan F. Monge
    Annals of Operations Research, 2020, 288 : 45 - 64
  • [5] Exact and heuristic approaches for a new circular layout problem
    Philipp Hungerländer
    Kerstin Maier
    Veronika Pachatz
    Christian Truden
    SN Applied Sciences, 2020, 2
  • [6] Exact and heuristic approaches for a new circular layout problem
    Hungerlander, Philipp
    Maier, Kerstin
    Pachatz, Veronika
    Truden, Christian
    SN APPLIED SCIENCES, 2020, 2 (06):
  • [7] Bilevel integer linear models for ranking items and sets
    Labbe, Martine
    Landete, Mercedes
    Monge, Juan F.
    OPERATIONS RESEARCH PERSPECTIVES, 2023, 10
  • [8] Uniqueness and reconstruction of finite lattice sets from their line sums
    Ascolese, Michela
    Dulio, Paolo
    Pagani, Silvia M. C.
    DISCRETE APPLIED MATHEMATICS, 2024, 356 : 293 - 306
  • [9] Improved approximation algorithm for the feedback set problem in a bipartite tournament
    Sasatte, Prashant
    OPERATIONS RESEARCH LETTERS, 2008, 36 (05) : 602 - 604
  • [10] Improved FPT algorithm for feedback vertex set problem in bipartite tournament
    Sasatte, Prashant
    INFORMATION PROCESSING LETTERS, 2008, 105 (03) : 79 - 82