Two-frequency laser with distributed feedback formed by a space charge wave

被引:0
作者
Igor O. Zolotovskii
Ivan S. Panyaev
Dmitry G. Sannikov
机构
[1] Ulyanovsk State University,
来源
Optical and Quantum Electronics | 2019年 / 51卷
关键词
Semiconductor waveguide; Space charge wave; Laser generation; GaAs;
D O I
暂无
中图分类号
学科分类号
摘要
The regimes of amplification and generation of optical TE waves arising on a grating formed by a space charge wave (SCW) in a plane optical waveguide based on an n-GaAs semiconductor are considered. For the perturbed n-GaAs waveguide, the reflectance and transmittance of TE modes with the same indices (m = n = 0) are calculated depending on the pump level and length of interaction between the optical and SCWs. It is shown that even with a relatively small depth of modulation of the dielectric constant (Δε≈10-5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Delta \varepsilon \approx 10^{ - 5} )$$\end{document} under conditions of high optical pumping (with an amplification factor γ≈150\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \approx 150$$\end{document} cm−1) and corresponding SCW-optical interaction length, there is a possibility of not only amplification, but also generation of forward and backward optical modes at a wavelength of 10.6 μm. The results can be used to create tunable semiconductor laser generators based on the SCW-optical interaction and operating in the near and mid-IR range.
引用
收藏
相关论文
共 97 条
[1]  
Adachi S(1989)Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, Al xGa J. Appl. Phys. 66 6030-6040
[2]  
Barybin AA(2000)As, and In Technol. Phys. 45 189-193
[3]  
Mikhailov AI(1979)Ga Mikroelektronika 8 3-19
[4]  
Barybin AA(1982)As yP J. Appl. Phys. 53 R123-R181
[5]  
Vendik IB(2003)Parametric interaction of space-charge waves in thin-film semiconductor structures Phys. Solid State 45 2044-2052
[6]  
Vendik OG(1996)Prospects for integrated-circuit electronics in microwave applications Opt. Spectrosc. 81 437-440
[7]  
Kalinikos BA(1972)Semiconducting and other major properties of gallium arsenide Proc. IEEE 60 1486-1502
[8]  
Mironenko IG(2001)Theory of space-charge waves in semiconductors with negative differential conductivity Appl. Phys. Lett. 79 904-906
[9]  
Ter-Martirosian LT(2017)Diffraction of Light by Space Charge Waves Bull. Lebedev Phys. Inst. 44 187-191
[10]  
Blakemore JS(1973)GaAs traveling-wave amplifier as a new kind of microwave transistor Appl. Phys. Lett. 23 224-225